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ABSTRACT

Positron emission tomography (PET) and computed tomography (CT) are well

established and powerful tools for medical diagnostics but even integrated PET/CT

scanner images still lack the necessary quality and resolution that would make

medical diagnoses flawless. In this thesis experiments were performed to statistically

determine the effect that image acquisition parameters have upon diagnostic

accuracy. Images from different PET/CT scanners were assessed by comparing

subject human diagnostic accuracy from a sample of both professional and student

volunteers. The assessment results were compared to the objective

NEMA-standards performance data provided by the manufacturers for each

scanner. The data analysis method is the receiver operating characteristic (ROC)

curve. We hypothesize that human performance in making accurate diagnoses from

PET images correlates with the system performance. The data shows that human

diagnostic performance correlates to spatial resolution and sensitivity of the PET

imaging systems.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Positron emission tomography (PET) and computed tomography (CT) are well

established and powerful tools for medical diagnostics but even integrated PET/CT

scanner images still lack the necessary quality and resolution that would make

medical diagnoses flawless. In this thesis experiments were performed to statistically

determine the effect that PET image acquisition parameters have upon diagnostic

accuracy.

This thesis presents a study to compare the diagnostic accuracy of the PET

component of two clinical PET/CT scanners. The two available PET/CT scanners

are systems installed respectively at Our Lady of the Lake Regional Medical Center

(OLOLRMC) and Mary Bird Perkins Cancer Center (MBPCC), both located in

Baton Rouge, Louisiana.

The comparison is based on the different physical characteristics and image

acquisition parameters of the two systems, such as 2D versus 3D acquisition, length

of acquisition, and reconstruction algorithm used. The study uses receiver operating

characteristics (ROC) analysis to measure diagnostic accuracy. The diagnostic task

was identification of lesions in PET images of an anthropomorphic torso phantom.

Two sets of readers, medical professionals (radiologists and radiation oncologists)

with extensive practice reading medical images and untrained volunteers (medical

physics students, post doctoral researchers and faculty, as well as some additional

non-professional volunteers) were used.
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It is shown that human performance in making accurate diagnoses from PET

images correlates with spatial resolution and system sensitivity.

1.2 Organization of the Thesis

Chapter 2 presents hypotheses and motivations. Chapter 3 gives background

information on PET/CT scanners and ROC analysis. In Chapter 4, the materials

and methods used in this study are described. Chapter 5 presents the research

results. The final chapter summarizes the project and provides suggestions for

continued work on this topic.



CHAPTER 2

QUESTIONS, MOTIVATION AND HYPOTHESES

This chapter describes the motivations behind pursuing this thesis and presents

identified goals for the research and the hypotheses that were adopted.

2.1 Motivation for the Study of PET/CT Parameters Using ROC

The broad plan of this thesis is to investigate and assess PET/CT

scanner image quality via correlation between design and acquisition choices and

accuracy of human performance in making diagnoses from the images. The primary

motivation is therefore fundamentally to help to guide medical professionals in

making better decisions that will ultimately benefit their patients. While exploring

these broad goals and motivations in depth, a number of further motivating

questions and problems were outlined. First a set of motivations arising from

medical diagnostic problems are listed. Secondly, a set of fundamental applied

research (or technical) motivating issues are listed. This discussion should provide

the reader with some appreciation for the relevance and importance of this research.

The initial consultations for the thesis proposal addressed the question of

which of the two available PET/CT scanners at OLOLRMC and MBPCC provides

the best diagnostic performance, the CTI-Siemens Reveal HD or the GE Discovery

ST. In addition an interesting problem would be to examine the effects of different

acquisition parameters on image quality, because this has important ramifications

for clinical practice and diagnosis of diseases. A question can be asked, “what set of

PET/CT scanner parameters ensures the best possible diagnosis?” It is apparent

that this questions is too broad and the focus had to be narrowed. The

3
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considerations for narrowing the focus are discussed in the rest of the chapter and

various references [1]–[5].

2.1.1 Medical Imaging Motivations

The main utility of PET in diagnosing and staging cancer is in the modality’s

ability to view metabolic activity [6]. Cancer cells, which in general proliferate more

quickly than normal cells, will have a higher glucose metabolism. By placing the

radioactive positron emitting isotope 18F on a sugar molecule, the molecule

fluorodeoxyglucose 18F-FDG is constructed. The presence of 18F-FDG makes cancer

cells visible on a PET image [7]. The higher the concentration of 18F-FDG the

brighter the appearance of the PET scan. Pathologies that show up as lesions in

specific organs are a prime concern for forming accurate diagnoses from medical

images. Some pathologies are very apparent on PET scans while others are

impossible to image. The indication is the 18F-FDG uptake of the tissues affected.

Both normal and pathologic cells have some FDG uptake. Table 2.1 shows the types

of normal tissue uptake that will be present in most PET scans regardless of state of

health and types of FDG uptake that are only present if a pathology.

Cancer diagnosis and perhaps therapy stand to benefit from delivering the

highest diagnostic image quality; this thesis tries to address this in the limited

context of patient care with the PET/CT scanners at OLOLRMC and MBPCC.

2.1.2 Fundamental Technical Questions

The fundamental technical questions address specific practical issues related to

conducting the research project. This section outlines these issues. The list of

questions has evolved over time. The current set of technical questions comprises
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Table 2.1. Physiological regions and conditions associated with
18F-FDG uptake with the type of uptake (normal or pathological)∗.

18F-FDG Uptake Type
Normal Pathological

Myocardium Metabolically active tumors
Brain. Acute radiation injury
Urine Subacute radiation injury
Muscle Osteochondritis
Thymus Bone infarctions
Saliva Blood pooling (pancoast tumor)
Wall of large vessels Blood pooling (SVC obstruction )
Bowel Bronchiectasis
Joints Lipoid pneumonia
Thyroid (including with thyroiditis) Sarcoid
Female breast (including with lactation) Granulomatous diseases
Brown fat (especially in younger adults) Bone marrow (including with cytokines)
Uterus (especially with menses) Collagen vascular disease.
∗ Adapted from [8].
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eight issues in two groups. The first group of questions required answering as part

of the planning of the research project (see also [9]–[13]). As experimentalists, our

procedure was to accumulate as much data as was reasonably possible in a small

amount of time. The second group of questions deals with optimizing the available

settings on the PET/CT scanners to maximize diagnostic performance (see

also [14]–[17]).

� Planning Questions

1. Should one study patient images or images from an anthropomorphic

phantom?

2. Should the PET and CT data be fused for the analysis and if so, how to do

the registration?

3. What type of pathology should be considered [18]?

4. How should a pathology be represented and/or identified?

� Optimization Questions

1. What performance parameters should be considered when analyzing the

results?

2. What acquisition parameters affect diagnostic performance?

3. What reconstruction algorithm provides the best diagnostic performance?

4. Given two acquisition modes on the Discovery ST, is either the 2D or the 3D

mode better for diagnostic performance?

Also see [19] for questions related to optimization.
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� Discussion

There are many obstacles to using patient data. For this study it would require

institutional consent from LSU, OLOLRMC and MBPCC. On the other hand, if

one uses phantom data there is no confidentiality requirement that would need

approval. Also, patient images must be correlated by another means to determine

that a patient is without pathology. By contrast, an ROC study of phantom images

can be done in a simpler manner with definitive input of actual positives and actual

negatives. Thus the ROC is easier to administer with phantom data. We know for

certain whether the spheres that represent the pathology are present or not present.

For the ROC study, ideally one can arrange relative numbers of positives and

negatives in correct proportion for the prevalence of the disease being studied. This

is very easy to achieve with phantom images but may not be with patient images.

To examine the effects of different acquisition parameters on image quality,

ideally one needs multiple data sets for comparison. It would have been

unreasonable to ask patients to have a second scan with a different acquisition time

or in the case of the Discovery ST a second scan with the septa retracted for 3D

acquisition. All of the parameters can be studied only by taking multiple

acquisitions.

The main disadvantage to using phantom data is that the results at best only

imply that they will be similar for the same type of patient data. Also, phantom

images might be too simplistic. Patient images have the advantage of realism.

Patient images exactly show all the real parts that are absent in the phantom or are

artificially present in the phantom.

Whether using phantom or patient data it should be noted that any results in

an ROC study only apply to a small subset of pathologies being studied [20, 21].
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However plausible it is to extend the results to larger classes of pathologies, this

cannot be a general extension of the statistical significance of an ROC study.

Extending the results to larger classes of pathologies would also not be reasonable

for a small subset of real patient images. The thesis conclusions are technically valid

for the simplified objects explored. The broader diagnostic significance of this thesis

is therefore dependent on the assumption that the results can be extended to

patient images with complex anatomy and physiology [22].

� CT-PET Registration Characteristics

PET and CT images can be fused in many ways [23]. These methods can be

classified as “pre-acquisition” or prospective and “post-acquisition” or retrospective

techniques. Retrospective fusion of PET and CT images must be done when the

images are acquired from physically separate PET and CT scanners. With both

classifications the images from the CT and PET are acquired separately, the

difference being in the prospective technique the relative position of the body being

imaged is known with a degree of precision. The images are then superimposed

using various techniques, such as physical overlays, alignment of intensities, or

fiducial markers. With prospective techniques, which are often called hardware

fusion, the images can be directly overlayed because the two scanners are

mechanically aligned in a clinical PET/CT system. The two scanners investigated

in this project are dual PET/CT systems fused prospectively. The CT scanner is

located a short table translation from the PET scanner. With patient

immobilization devices such as VacLoc� and Aquaplast RT�, the dedicated

PET/CT scanners using prospective fusion do a superior job in image

registration [23]. In addition, the short time interval between the CT and PET
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scans decrease the chance for patient movement. By mapping directly the

coordinate system on the CT scan to the coordinate system on the PET scan, many

of the difficulties with retrospective alignment of images are minimized. Further

motivation from medical imaging is obtained from a review of the characteristics of

CT-PET fusion methods.

Over the past few years the physicians at MBPCC have identified several

aspects of the impact of PET/CT on treatment planning [8].

� PET/CT allows more appropriate doses/volumes for extent of primary in

certain head and neck, esophagus and lung with atelectasis;

� PET/CT allows more appropriate doses/volumes for nodal regions;

� PET/CT reduces “false positive” PET and occasionally “false positive”

findings on CT;

� PET/CT improves determination of “indeterminate” CT nodes; and

� PET/CT improves sensitivity in cervical nodes.

It should be noted that CT-PET fusion methods were not part of the

investigation in this thesis research. Expanding the research to include evaluation of

fused PET/CT images, as well as patient images, is planned for future work.

2.2 Specific Questions of This Thesis

The issues that were identified as worthy of investigation are listed here. These

are referred to as the primary questions of this thesis.
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Question 1. Using ROC analysis, can we distinguish a difference in diagnostic

image quality between images taken with the Discovery ST in 2D mode and

images taken with the Discovery ST in 3D mode?

Question 2. Using ROC analysis, can we distinguish a difference in diagnostic

image quality between images taken with the Discovery ST in 2D mode and

images taken with the Reveal HD for which only 3D mode is available?

Question 3. Using ROC analysis, can we distinguish a difference in diagnostic

image quality between images taken with the Discovery ST in 3D mode and

images taken with the Reveal HD?

Question 4. The PET images appear more visually appealing using an iterative

reconstruction algorithm than filtered backprojection or other noniterative

algorithms [24]. Does this correlate with an observer’s ability to identify

lesions?

Question 5. What is the correlation between system performance parameters and

human observer performance in identifying lesions?

Question 6. Using ROC analysis, can we distinguish a difference in diagnostic

image quality between images taken with 4-minute or 16-minute acquisition

times?

2.3 Initial Hypotheses

After consultation with medical physicists, radiologists and radiation

oncologists at LSU, OLOLRMC and MBPCC, and with the foregoing motivational
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problems in mind, six hypotheses were formed. The reader is referred to Chapter 3

for discussion of ROC analysis and a review of PET imaging methods.

Hypothesis 1. An ROC study will confirm that 2D acquisition of PET/CT data

produces superior diagnostic image quality exhibited by a larger Az value for the

ROC curve than 3D acquisition.

Reasoning : The Discovery ST 2D mode of acquisition is used preferentially for

whole-body imaging at MBPCC over the 3D mode. There are few clinical

protocols in which the images at MBPCC are taken in 3D mode. An initial

survey of patient images created with each mode from the Discovery ST by an

OLOLRMC radiologist and an LSU physicist indicated that the 2D mode was

generally preferable [25].

Hypothesis 2. An ROC study will show that the Discovery ST scanner operated

in 2D mode shows inferior diagnostic image quality as compared to the Reveal HD

scanner.

Reasoning : The Discovery ST 2D mode of acquisition has a larger spatial

resolution and smaller sensitivity than the Reveal HD scanner as specified by

the manufacturers.

Hypothesis 3. An ROC study shows that the Discovery ST scanner operated in

3D mode will show inferior diagnostic image quality as the Reveal HD scanner.

Reasoning : The Discovery ST 3D mode of acquisition has virtually the same

sensitivity but inferior spatial resolution to the Reveal HD.

Hypothesis 4. An ROC study will show that the iterative reconstruction

algorithm yields superior diagnostic image quality for both the 3D FORE and DIFT

algorithms.
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Reasoning : The images reconstructed with the iterative OSEM algorithm are

more visually appealing and contain fewer reconstruction artifacts. This

should make it easier to identify lesions in a PET image.

Hypothesis 5. Superior system performance parameters correlate to superior

diagnostic image quality.

Reasoning : Crystal dimensions, spacing, ring separation, block size and

detector electronics are all physical parameters that combine to determine the

system performance parameters such as axial and transaxial resolution and

sensitivity. Measurements of system performance parameters using NEMA

guidelines are the standard used to evaluate PET/CT systems. Important

system parameters are transverse resolution, axial resolution, sensitivity,

crystal size, and noise equivalent count rate (NEC). Improvements in these

parameters should improve diagnostic image quality.

Hypothesis 6. A longer acquisition improves the diagnostic image quality

compared to shorter acquisitions.

Reasoning : The primary source of noise is in the Poisson statistics. That noise

will decrease as 1/
√

N where N is the number of counts.



CHAPTER 3

REVIEW OF PET/CT IMAGING AND ROC ANALYSIS

Any improvement in knowledge about how engineering standards either help or

hinder medical diagnoses can be counted as potentially life-saving information. PET

imaging provides information about the metabolic activity or function of the tissue

being scanned. This is a powerful means by which a competent physician can glean

knowledge about disease and various pathologies that structural imaging techniques

such as x-ray imaging, CT, and magnetic resonance imaging (MRI) do not reveal.

The latter techniques typically provide information about the density and

composition of tissue and other structural features, but not functional information.

PET scanning can reveal active tissue ‘hot spots’ that should not be present

(signaling perhaps malignant tumors or other lesions); however, some hot-spots are

indicative of normal physiology. PET can also reveal dead regions where one would

expect activity (for example, in the heart this could signal dead myocardial tissue).

Combined with CT, a PET/CT system has tremendous diagnostic potential,

but only if operated and interpreted correctly. A purpose of this thesis is to

correlate the published performance parameters based on the NEMA standards for

the two scanners to measured human observer performance of lesion detectability.

Specific details of the two PET/CT scanners are give in Chapter 4. This chapter

presents an overview of PET/CT imaging in §3.1, followed by an introduction to

ROC analysis in §3.3. Section 3.2 breifly reviews PET radiopharmaceuticals and

interpretation of PET images.

13
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3.1 Overview of PET and CT Technology

The ability of PET scans to image tissue or cell function is due to positron

emission from a radiopharmaceutical [23]. Section 3.2 describes the

radiopharmaceutical 18F-FDG used in this study. A PET radionuclide is a positron

emitter, or gives rise to a daughter decay product that emits a positron. Electrons

capture the positrons during annihilation. The detected signal in a PET scan is the

two 511 keV annihilation photons traveling at 180 degrees from one another [26].

The body’s natural variability in blood flow and uptake of the administered

materials for normal physiology is known in advance. PET scanning provides almost

direct information about where the radionuclide-bearing compounds are

preferentially absorbed or diverted in a patient’s body. Variations of uptake in a

PET scan from normal physiological uptake can be indicative of disease.

3.1.1 Some Characteristics of PET/CT Scanners

� Interpretation of PET Images

The detectability of lesions is significantly improved with tools like maximum

intensity projections and fusion of CT slices to obtain anatomical information. Often

the lesion is the hottest area of pixels in an image, but not always. In general, the

lesions in this study were not made significantly larger than the average fluctuation

of pixel intensity in a relatively hot region of the image it is being fused with.

� Positioning Uncertainties in PET

PET scanners have inherently poor spatial resolution compared to CT and

MRI; the positional uncertainty is very large compared to CT and MRI. For this
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Figure 3.1. PET image of the anthropomorphic torso phantom with
a simulated lesion in the right pulmonary wall.

reason, it is a poor modality to obtain anatomical or positional information. The

main utility of PET is functional imaging. While efforts are being made to improve

the quality (primarily spatial resolution) of PET scanners, there is a limit to the

amount of improvement that can be achieved. Several issues govern the

fundamental spatial resolution of PET scanners [26].

1. The positron range (average value ∼0.2 mm for 18F-FDG )

2. Non-colinearity

3. Stochastic energy deposition (stochastic fluctuations in energy deposition in

detectors)

4. Stochastic scintillator photon production

5. Imperfect detector response (inefficiencies on top of fluctuations)
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6. Detector readout (scatter and random events)

7. Signal processing (scatter, detector energy resolution, coincidence timing

resolution)

For detector energy deposition lutetium oxyortho-silicate (LSO) detectors

should provide significant improvement over bismuth germanate (BGO) detectors.

The goal is to minimize the energy resolution to better remove scattered photons. A

511 keV photon in matter likely undergoes Compton scattering or photoelectric

absorption. Compton scattered photons range in energy from 170 keV to 511 keV

with recoil electron energies from 0 to 340 keV.

Range blurring and photon non-colinearity are uncertainties that are a result of

positron physics. The path of a positron between emission and annihilation is

highly irregular resulting in a distribution of path lengths prior to annihilation.

Photons arising from a positron annihilation event are colinear if the

electron-positron annihilation pair has no residual momentum. Residual momentum

of the electron-positron annihilation pair, which must be conserved, results in a

deviation from colinearity. The uncertainty associated with this effect is minimized

by using small separations between detectors. However, the detector separation

must be large enough to encompass the majority of patients.

3.1.2 Correction of Image Data for Random and Scattered Events

The three types of coincidence events in a PET scanner are true events,

random events and scattered events [27, 28]. Scattered and random events provide

lines of response that don’t correspond to the true site of positron annihilation.

Thus, scattered and random events create blurring and reduce contrast in the image
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and should be removed. Removing these events can be done by various means, such

as narrowing the coincidence time window and decreasing the width of the energy

window. Intrinsic detector limitations allow only so much of these physical

parameter manipulations. Additional corrections for scatter are made using models

of scattered events based on an assumed distribution. Random events can be

corrected using models based on detector count rates or measured using a delayed

coincidence method. The problem with all algorithms for random and scatter

corrections is that some true events are thrown away with the scattered and random

events. These algorithms provide statistical corrections rather than deterministic

identification of specific scattered or random events [29].

3.1.3 Correction of Image Data for Attenuation

For each annihilation event registered, other events are lost due to the

attenuation of the 511 keV photons in the body being imaged. The probability of

attenuation is given by a decaying exponential function of the distance the photon

must travel. The probability of a photon being attenuated in a homogeneous

medium in which the photon must travel a distance d is given by the equation:

P = e−µd. The attenuation coefficient, µ, is dependent on energy. For a

non-homogeneous medium µ will vary with distance,and position, and the

attenuation probability for a single photon is:

Atten. Prob. = e−
R d
0 µ(E,l) dl (3.1)

and for two annihilation photons is

Total. Prob. = e−
R D
0 µ(E,l) dl, (3.2)
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where D is the patient diameter. The attenuation coefficient is obtained from a CT

scan performed at 120 keV. Using measured values of attenuation for each energy

and assumed densities of the tissues in the body being imaged, a map is generated

to correct for photon attenuation. This allows for increased intensity to appear in

the image in regions of activity where more of the true events are lost. Attenuation

correction in a PET image makes interior sources easier to identify. All the images

used in this study were attenuation corrected [23, 26].

3.1.4 Image Reconstruction

The data collected in the PET scanners will be of the form of a 2D or 3D

sinogram. The sinogram is a plot of lines of response (LOR) of true events. For a 2D

sinogram, one axis is the distance (s) from the center to the LOR and the other axis

is the inclination angle (θ) with θ = 0 defined as a LOR perpendicular to the x-axis.

Figure 3.2 illustrates the definition of a LOR; the figure also shows an elliptical

object within the circular FOV of a scanner. Each LOR is the result of a positron

annihilation event producing two 511-keV photons travelling 180 degrees apart.

Detecting the pair of 511-keV photons registers an event along the LOR.

Figure 3.3 illustrates the sinogram for the uniform elliptical object shown in

Figure 3.2. Reconstruction algorithms take the sinogram data g(s, θ) and, through

various computational techniques, reconstruct the object f(x, y).

� Basics of Filtered Backprojection

The Radon transform is the mathematical description of projections by

integrals over all directions around an object being imaged with a tomographic
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Figure 3.2. Illustration of a line of response (LOR) from PET scan,
these form a sinogram used in image reconstruction algorithms.

Figure 3.3. The sinogram for the elliptical object shown in Fig-
ure 3.2.
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imaging device.

g(s, ϑ) = Rf(x, y) =

∞x

−∞

dx dy f(x, y) δ(x cos(ϑ) + y sin(ϑ)− s) (3.3)

The image of f(x, y) can be obtained by an inverse of this operation,

f(x, y) = R−1g(s, θ) (3.4)

This is done in practice by backprojecting the inverse Fourier transform of the

Fourier transform of the sinogram multiplied by a ramp filter (|ξ|) and an optional

smoothing filter (H),

f̃(x, y) = B
[
F−1(|ξ|G(ξ, θ))H

]
(3.5)

G(ξ, θ) = F(g(s, θ))
]

(3.6)

which is a method called filtered backprojection (FBP). The tilde is placed over the

function f(x, y) to point out that what is reconstructed is a representation of the

object, not the object itself, and no imaging system is perfect. The ramp filter is

used to correct for the blurring of f(x, y) by the backprojection operator [30].

� The DIFT Algorithm

The DIFT (Direct Inversion Fourier Transform) algorithm uses the central slice

theorem. In going from the sinogram data to the image, the data must be

interpolated in Fourier space onto a rectangular grid [26]. Reconstruction is

achieved by inverse Fourier transformation.

� The OSEM Algorithm

The ordered subset expectation-maximization (OSEM) algorithm is an

iterative 2D or 3D algorithm. For 3D data acquisition, a 2D OSEM algorithm (used
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in conjunction with another algorithm to convert 3D to 2D) is a relatively fast

method for producing visually appealing PET images [26]. Images in this study

specified as OSEM were not 3D acquired data Fourier rebinned and reconstructed

with a 2D OSEM algorithm.

� The 3D FORE Algorithm

The 3D FORE algorithm is a method of Fourier rebinning. This algorithm

converts a 3D sinogram into a set of 2D sinograms. It can then be reconstructed in

various different reconstruction algorithms. In this study images that were specified

as being reconstructed by 3D FORE were reconstructed by FBP after rebinning.

3.2 Radionuclides Used in PET

There are several common positron-emitting radionuclides used in PET

imaging. All of these elements have short half-lives. Therefore a PET imaging

center requires a nearby or in-house supply of these isotopes. These isotopes must

also be attached to larger molecules using methods of synthetic chemistry to make

them useful for functional imaging. Table 3.1 lists common PET radionuclides.

Desirable features are longer half-life (especially if transport is needed), high

specific activity (smaller volumes are needed), and smaller maximum positron

energy (the smaller the energy, the less range blurring occurs). The only

radionuclide used in this thesis was 18F. Southern Isotopes-Baton Rouge produced

the 18F in a cyclotron. It was then attached to a glucose molecule by replacing a

hydroxyl group from the glucose. The radiopharmaceutical produced is called

fluorodeoxyglucose or 18F-FDG. The 18F-FDG mimics glucose in the body, allowing

for the imaging of glucose metabolism. More detailed information of the chemistry
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Table 3.1. Radionuclides used in PET imaging.∗

Radionuclides Half-life Max. Positron Mean Range

(min) Energy (MeV) in Water (mm)

Carbon-11 20.4 0.960 1.7

Nitrogen-13 10.0 0.491 1.2

Oxygen-15 2.0 1.732 2.7

Fluorine-18 109.8 0.633 1.4

∗Adapted from [31].

of producing 18F-FDG can be found in reference [32].

Advancements in the last ten years have improved the process of

manufacturing 18F-FDG such that the time from bombardment in the cyclotron to

synthesis is less than 40 minutes. This very fast production time for 18F-FDG has

increased the utility of PET imaging significantly.

3.2.1 Standard Uptake Values (SUV)

Pathologic staging is broken up into several grades. The higher the grades the

more poorly differentiated are the cells and the more cancerous. In general,

higher-grade tumors proliferate more quickly and will have larger SUVs [33]. Cancer

cells have higher metabolic glucose rates than normal tissue. 18F-FDG is a positron

emitting simple sugar that, in general, will have higher concentrations in cancer

cells than in normal tissue. Although the relationship is not linear, as the SUV

increases so does the intensity. The SUV in normal tissue is by definition roughly
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equal to one.

SUV =
Tracer uptake

Administered activity
× 1/

(
patient weight (kg)× 1000

)
(3.7)

where tracer uptake is measured in MBq/mL and ‘administered activity’ is in units

of MBq.

Physicians are concerned with the maximum SUV in a region of interest (ROI)

as it has a better diagnostic value than an average SUV. Lesions are said to be

“PET positive” or cancerous for SUVs above 4 in many clinical situations. There

are many physiologic reasons for “PET positive” regions that are not cancerous.

Therefore, this is not a task that simply can be replaced with computer-aided

diagnosis [34, 35].

3.3 Overview of ROC Analysis

3.3.1 The Need for ROC Analysis

ROC was first developed as a tool in signal detection theory to address

problems with radar image observation [36]. ROC analysis is a branch of statistical

decision theory. ROC analysis is used in business, economics, psychology, and many

other non-medical fields [37]. Applications in medical imaging began in

1960 [38, 39]. The goal of ROC is to provide an objectively meaningful test for

judging the performance and usefulness of a diagnostic imaging system [40]–[44].

This reduces down to a radiologist’s ability to correctly identify pathology based on

the images created by the device. To have confidence in standards and equipment, a

comparison must be done to show radiologists’ performance for correctly

determining diseased and healthy states (see also [45, 46]).

The easiest test to administer and analyze is a straight average, historically
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known as “diagnostic accuracy” [47]. This records how many images were correctly

classified as diseased or healthy, normalized by the total number of images, giving

an average performance. This number can be very high, and yet the performance of

the imaging device simultaneously could be very bad. Take, for example, a rare

disease in which the prevalence in the image set is 1%. If the radiologist, at a whim,

classifies all images as healthy, the radiologist will have a 99% success rating.

However, the diagnostic test has been of no use in identifying the diseased

state [13, 48]–[50].

The diagnostic test should identify the frequency of false positive and false

negative errors. For an initial screening test, a false positive may be far more

desirable than false negatives, while on other tests the relative cost of each type of

error could be equal. The relative cost of each type of error should be utilized when

setting the decision boundary or confidence threshold, which is the criterion that

determines (in the observer’s view) whether the image shows health or disease.

With a computer model, the decision boundary can be set by parameters like

relative intensity, contrast, or volume, giving a fixed classification criterion. The

decision boundary can shift with human observers, often leading to a higher

incidence of correct classifications with trained observers but potentially fluctuating

from session to session even for the same observer. In image classification problems,

a variable decision boundary based on each image is generally preferable, which can

be achieved by human observers. This is a reason why trained human observers can

out-perform computer-aided diagnoses in determining a unique decision boundary

for every image [34, 35].

In ROC terminology, “sensitivity” is the true positive fraction (TPF), the

fraction of patients actually having the disease who are correctly diagnosed as
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“positive.” The ROC term true negative fraction (TNF) is “specificity”, the fraction

of patients who actually are without the disease that are correctly diagnosed as

“negative.” In the framework of the ROC analysis these two variables are

independent [12, 51]. The implication of this is that the fractions of false positives

and false negatives can also be measured separately. This is an essential assumption

of ROC analysis, making ROC useful for highly prevalent diseases as well as for

those of very low prevalence [52].

The relationships between false negative fraction (FNF) and sensitivity and

between false positive fraction (FPF) and specificity are written as follows:

FNF = 1− TPF = 1− [sensitivity] (3.8)

and

FPF = 1− TNF = 1− [specificity] (3.9)

When evaluating the performance of a diagnostic system it is more revealing to

compare two parameters, e.g., sensitivity and specificity or TPF and FPF, rather

than the single parameter of diagnostic accuracy. However, simple comparison of

two parameters is still not adequate in evaluating a system’s performance because

the source of diagnostic misclassifications is not known: was the misclassification a

result of observer error or of the imaging system’s inability to separate states of

disease and health? An effective comparison must distinguish between these sources

of error [53]–[55].

An individual human observer can move the decision boundary for each image

or each image set. This corresponds to a set of pairs of comparisons that can be

plotted on a unit square. The typical ROC curve places FPF on the horizontal axis

and TPF on the vertical axis.
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3.3.2 ROC Analysis

The ROC method takes continuous-distributed or discrete ordinal category

diagnostic test results and fits them to a binormal distribution. The data typically

are a confidence-rated ordinal category diagnostic test. The term binormal1 refers

to two normalized Gaussian distributions such as that in Figure 3.4. The left

distribution shown in Figure 3.4 is a normalized Gaussian fitted distribution of

actual positive cases. The right distribution is a normalized Gaussian fitted

distribution of actual negative cases. The horizontal axis corresponds to a

continuous classification of performance by a given diagnostic test. The better the

diagnostic test, the larger the separation of the two Gaussians.

Figure 3.4. An example of a poorly separated binormal (double
Gaussian) distribution.

Figure 3.5 shows an example of such a larger separation where the abscissa is

an arbitrary test value. The decision boundary is the value that the test uses to

1In the mathematical literature the term “binormal distribution” usually refers to a 2D bivariate
distribution, whereas in the ROC literature (and in this thesis) the word binormal is used for a 1D
double Gaussian distribution (a ‘camel hump’ shaped PDF).
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classify individual test results as positive or negative [56]. The decision boundary is

set by the user’s tolerance for an acceptable number of false positive decisions (i.e.,

actual negatives classified as positive) and an acceptable number of false negatives

(i.e., actual positives classified as negative).

Figure 3.5. An example of a well-separated binormal (double Gaus-
sian) distribution.

Each decision boundary separates the population into four groups shown in

Table 3.2 and the accompanying figure insert. The purple line in the figure

represents a virtual decision boundary about which observers might be presummed

to have split their decisions when forced, whereas the two Gaussians represent the

actual populations of images with and without lesions. The essential problem in

statistical decision theory is finding the set of variables, the imaging device, the test

or the gauge that best separates the two normal distributions of actual positive from

actual negative. A poor test produces little or no separation of the two

distributions. The best test is one that maximizes the separation, although external

issues such as cost-effectiveness, convenience and patient discomfort may factor into

determining if the test is useful clinically [57, 58].
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Table 3.2. Grouping of diagnostic decisions into two partitions of
two sets each. The diagonal table entries partition by truth value,
whereas the row entries partition all diagnoses by observer decision.

Actual Positive Actual Negative

Diagnosed Positive TP (green) FP (yellow)

Diagnosed Negative FN (red hatch) TN (blue hatch)

A fundamental principle of ROC analysis is that movement through decision

space can find the test metric(s) that produce the maximum separation and

minimum overlap of the binormal distribution. The parameters that describe the

binormal fit are a and b, where a is the separation and b is the relative widths of the

two distributions. The ROC analysis attempts to maximize a and minimize b (see

for example [13, 59, 60]). The binormal parameters specify a unique line on

‘normal-deviate’ axes in which each axis is the stretched-out TPF and FPF over the

entire plane such that the origin maps to the center of the ROC unit square. Having

the binormal parameters a and b is sufficient to generate any size set of pairs of

TPF and FPF needed for plotting an ROC curve. Common ways to evaluate the

goodness of a curve are the area under curve Az, TPF at a given FPF, and FPF at

a given TPF. ROC analysis is most useful in comparing differences in curves against

a null hypothesis such as an area test, true positive fraction test, or bivariate test.

False positive decisions can prove expensive in both human and hospital

resources and, therefore, require additional tests and analysis. Each observer or

institution determines its acceptable rate of false positives. The movement of the

decision boundary generates a set of indices that are plotted on a unit square with

FPF on the horizontal axis and TPF on the vertical axis. This ROC curve

represents the tradeoff of sensitivity and specificity attainable from the diagnostic
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test. Analysis of the range of decision boundary(s) can identify the operating

parameters of a diagnostic system that provide the best possible discriminating

power [61, 62].

In practice, one sees a typical ROC curve similar to the curve shown in

Figure 3.6. (This curve is intermediate to those shown in Figure 3.7 and Figure 3.8).

Figure 3.7 illustrates a test with no discriminating power; there is no evidence from

the data that an observer can tell a true positive from a false positive or a true

negative from a false negative. The observer is basically guessing, giving the

straight-line ROC curve shape. The area under this curve is Az = 0.5. In decision

space, this corresponds to two normal distributions that completely overlap. There

is no clinical benefit of performing such a test.

Figure 3.6. An example of the typical form for an ROC curve.
The observers are able to occasionally distinguish between samples
from the binormal distribution as representative of one or the other
Gaussian, but not perfectly, yielding data points that are fitted by
the line shown.
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An ideal observer in a perfectly discernable test will give an ROC curve with

Az = 1.0. A perfect ROC curve has the idealized form shown in Figure 3.8. The

binormal distribution of actual positives and actual negatives that produces this

ROC curve has virtually no overlap.

Figure 3.7. An idealized ROC curve obtained from fictional ob-
servers with zero discriminatory capacity. Unable to tell positive
from negative cases, the observers give equal weight to each type of
diagnosis. A blind observer or simple guessing might give one an
approximation of this curve.

As a curiosity, a pathological observer produces an ROC curve with Az < 0.5;

such a “dyslexic” observer is purposefully giving the wrong answer, inverting their

diagnosis with a boolean NOT. The resulting ROC curve will have the form of

Figure 3.9. In terms of the binormal distribution, the distribution of actual positives

lies to the right of the actual negatives. The decision boundary, although correctly

drawn, misclassifies all of the data.

*
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Figure 3.8. The ROC curve for a perfect diagnostic test. To obtain
this ROC curve, all observers must be able to flawlessly distinguish
between the two Gaussian distributions.

3.3.3 Requirement for Diagnostic Truth in ROC Analysis

In this thesis, truth is the presence or absence of the simulated lesions. The

classification requirement of the observer comes down to confidence that the

simulated lesions are present in the images. Diagnostic truth is a binary definitive

answer. Future studies could have more than two states of diagnostic truth. For

instance, the observers might be required to classify the image in four states

according to size or intensity [63]. Another possibility for future work would be

continuous classification of lesions based on size or location [64]–[66].



32

Figure 3.9. The ROC curve for an observer who reverses all positive
and negative decisions. The observer reports the positives to be
negatives and vice versa.



CHAPTER 4

EXPERIMENTAL METHODS AND MATERIALS

This study is confined to experimentation on two clinical PET/CT scanners.

Medical imaging technology is perhaps one of the most advanced areas of

application of noninvasive imaging of materials. PET/CT is one of the newest

developments in medical imaging. Section 4.1 describes the two PET/CT systems

that were used to obtain raw data for the ROC study. Section 4.2 details the

phantom and spheres that were imaged. Section 4.3 describes data acquisition and

preparation. Section 4.4 gives specific details of the ROC analysis used to test the

hypotheses of §2.3.

4.1 Medical PET/CT Scanners

Section §3.1.1 reviewed some of the general features of PET/CT scanners. In

this section the two specific scanners used for the project are described. Table 4.1

summarizes the main specifications for these two PET/CT scanners used in this

thesis research.

4.1.1 The GE Discovery ST

The Mary Bird Perkins Cancer Center (MBPCC) owns a General Electric

Discovery ST PET/CT scanner that serves the clinical professionals at MBPCC as

well as research faculty and graduate students at LSU. The Discovery ST system

was installed in Fall 2003; it has 2D and 3D PET acquisition modes and performs

4-slice helical CT scans. Figure 4.1 is a photo of the scanner.

The 2D PET acquisition mode is achieved by inserting septa between the

33
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Table 4.1. Manufacturers’ specifications for the Discovery ST and
Reveal HD scanners.

Scanner Properties
Property Reveal HD [16] Discovery ST [14]

Energy Window Lower Level 350 375
Energy Window Upper Level 650 650
Ring Diameter (cm) 82.7 88.6
Number of Rings 32 24
Detectors per Ring 576 420
Total Number of Detectors 18432 10080
Axial FOV (cm) 15.5 15.7
Transaxial FOV (cm) 58.5 70
Scintillation Crystals BGO BGO
Crystal Dimensions (mm) 4.05× 4.39× 30 6.3× 6.3× 30
Number of PMTs 576∗ 280�

Number of image planes per bed position 63 47
Coincidence Window (ns) 12 11.7
∗Four PMTs per block.
�One MA-PMT per block.

detector rings. The 0.8-mm thick and 54-mm long tungsten septa are retracted for

3D acquisition. The PET detector comprises an array of 10,080 individual BGO

crystals put into 24 rings with 420 crystals per ring. Each crystal has an axial width

of 6.3 mm, transaxial width of 6.3 mm and a length of 30 mm. The axial FOV is

15.7 cm and the transaxial FOV is 70 cm; the physical diameter of the PET detector

ring is 88.6 cm. Each bed position produces 47 slices. The crystals are arranged in

6× 6 blocks coupled to a four-anode square photomultiplier. Additional information

along with performance evaluations can be found in the literature [14, 15].

The Discovery ST has two available methods for PET image reconstruction in

the 2D mode: filtered backprojection (FBP) and OSEM. In the 3D mode, the

available algorithms are 3D reprojection or Fourier rebinning (FORE or 3D FORE)
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Figure 4.1. The front view of the MBPCC Discovery ST PET/CT
scanner.

followed by either filtered backprojection or weighted least-squares OSEM iterative

reconstruction.

4.1.2 The CTI-Siemens Reveal HD

Our Lady of the Lake Regional Medical Center, has a Reveal HD PET/CT

imager serving both clinical professionals and research personnel. This machine was

installed in Spring 2002; it operates in 3D PET acquisition mode and acquires

single-slice helical CT scans.

The Reveal HD has an ECAT� PET gantry. ECAT is a model of a stand alone

PET system developed independently from the CT scanner. The PET detector has

only a 3D mode of acquisition. It is made of BGO crystals (4.05 mm axial ×

4.39 mm transaxial × 30 mm radial) arranged in 8× 8 blocks. Each block has four

PMTs. There are a total of 288 blocks, which defines the sinogram dimensions. The
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ring diameter is 82.7 cm with an axial FOV of 15.5 cm and a transaxial FOV of

58.5 cm. There are 32 detector rings [16], making a total of 63 image planes per bed

position.

The Reveal HD has the same three methods of PET image reconstruction that

are present on the 3D Discovery ST. Section §4.1.3 gives more details on the default

reconstruction protocols used clinically.

4.1.3 Default Acquisition Protocols and Reconstruction Methods

The default clinical acquisition protocols for whole-body imaging were used as

the base acquisition parameters for the images in this thesis. These base parameters

were altered to obtain the image variations investigated here, such as increasing the

acquisition time from 4 minutes (default for Discovery ST) to 16 minutes. The raw

sinogram data on the scanners is very large and not directly accessible to the user.

It was therefore necessary to use the reconstruction algorithms bundled in the

included scanner software. For the present research it was only possible to

reconstruct the data within the bundled options for each scanner. Within the

literature are examples of studies in which a null effect was shown on the effect of

image processing on lesion detection for other modalities [67].

The default reconstruction for clinical use of both scanners is OSEM. OSEM in

this study was performed with 4 iterations and 8 subsets. With iterative

reconstruction, the activity distribution is initially estimated, then the measured

projections are compared to these estimated projections. The estimation is then

updated and the projection estimate recalculated. OSEM is an example of a

maximum-likelihood expectation-maximization algorithm [26].
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4.2 Laboratory Materials and Software

This section describes the experimental procedures and associated materials for

acquiring the PET/CT images for performing the ROC analysis. The actual ROC

analysis method is explained in §4.4.

4.2.1 Phantom and Sphere (Simulated Lesion) Set

Images for this thesis were acquired of a Data Spectrum Anthropomorphic

Torso Phantom� (Model ECT/TOR/P) with the optional Cardiac Insert� (Model

ECT/CAR/I). The main features of this torso phantom are a large body-shaped

cylinder, separate chambers for each lung, a liver chamber, and a spine insert. The

lung inserts are filled with Styrofoam beads and water to simulate lung tissue

(density of ∼ 0.3 g/cm3). The size of the torso is consistent with average to large

patients (38 cm× 26 cm). This phantom does not include contours to simulate

breasts. The cardiac insert comprises two nested cylinders; the outer cylinder

models the left ventricular wall while the inner cylinder represents the volume of the

left ventricular chamber. The FDG concentration in each chamber of the phantom

can be individually adjusted to simulate different physiologies and acquisition times

after injection. Figure 4.2 shows a researcher filling the body-shaped outer chamber

of the phantom. Details of the volumes of the individual chambers can be found on

the manufacturer’s website (http://www.spect.com).

The lesions were simulated with a set of spherical shells capable of holding

small volumes of radioisotope. Four spheres were used to simulate lesions of

different sizes. The spheres are the Data Spectrum Micro Hollow Sphere Set (4)�

(model SCT/MI-HS/ST). The inner diameters of the spheres are 3.95 mm, 4.95 mm,
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Figure 4.2. Torso phantom preparation.

6.23 mm, and 7.86 mm; the outer diameters are 6.0 mm, 7.0 mm, 8.0 mm, and

10 mm, while the volumes are 0.031 mL, 0.063 mL, 0.125 mL, and 0.25 mL. The

micro-hollow spheres are shown in Figure 4.3.

Figure 4.3. Photo of the micro-hollow spheres used to simulate le-
sions.
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4.2.2 Preparation of the Phantom

The phantom is stored dry to inhibit bacterial growth, which might cloud the

chambers and require additional cleanup effort. A few days prior to image

acquisition the phantom and all of the inner chambers are filled with tap water.

Forty-eight hours is sufficient for the water to reach thermal equilibrium and allow

the air bubbles to separate and rise to the top. A small volume of air is left in each

chamber to allow for thermal expansion and to prevent warping of the phantom.

In the hour or two prior to imaging, the phantom and inner chambers are filled

completely with tap water and 18F-FDG. The radioactivity was assayed in a well

chamber; the amount put into each phantom chamber was determined by assaying

the syringe before and after dispensing the radioactivity into the chamber. A total

activity of approximately 2 mCi was used each time the phantom was filled. The

relative concentrations of 18F-FDG in each chamber were maintained at

approximately the same amounts over all acquisition sets. The only exception was

that activity was placed in the cardiac insert for some imaging sessions but not

others.

The painstaking process of removing the air bubbles during preparation was

the most difficult activity. Air bubbles contain no activity and will appear as dark

spots in a PET image. We attempted to remove every air bubble in the phantom

prior to imaging.

The activity in the phantom was chosen to represent approximately the

activity per unit mass in a typical patient. A typical 70 kg patient will receive an

injection of 10 mCi about one hour before imaging. The total volume of water in the

phantom is 10.6 liters. The phantom’s total mass is 10.6 kg plus the mass of the

phantom itself. To obtain phantom images with a similar 18F-FDG activity per unit
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mass, the activity was scaled down. Thus an activity in the phantom of

2 mCi (=10 mCi×15 kg/70 kg) was chosen to make the images similar to those

attained clinically [68]. Each image acquisition was decay corrected to the time at

which the phantom preparation began.

The process of preparing the phantom for imaging generally took between one

and two hours. The preparation was done in the hot lab at MBPCC. All handling of

radioactivity followed appropriate procedures including protection by a lead glass

shield while assaying the syringe and filling the spheres.

The scans were acquired in the sequence of a scout x-ray image, the CT scan

and then the PET scan. The phantom was placed on the imaging table on a

protective pad. If the phantom were to leak, the protective pad would prevent the

scanner from becoming contaminated with 18F-FDG. The phantom was centered in

the FOV to minimize any effects of asymmetric and degraded resolution at the FOV

edges. The scans were performed from the control room, which is safely shielded

from the x-rays generated during the CT scan.

The scout scan is a conventional x-ray image of the object. It is used to select

the location and number of bed positions that will be acquired in the PET and CT

scans. The minimum size of a scan on either the Discovery ST or the Reveal HD is

one bed position or about 15 cm. A typical scan of a patient may require 6 or more

bed positions, depending on the volume to be imaged.

The CT scan produces an anatomical image; it also provides the attenuation

correction factors for the PET images. Neither scanner permits the PET scan to

take place without the CT scan. Other than for PET attenuation correction, the

CT images were not used further in this study.

Images were obtained with 4 and 16 minute acquisition times on both scanners.
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For the Discovery ST scanner, the septa were lowered and raised to obtain the 2D

and 3D acquisitions. The spheres were put into the phantom and imaged; they were

also imaged separately and added later into the phantom images by computer

processing (see §4.3) to create additional image sets.

4.3 Preparation of the Images for the ROC Study

4.3.1 Creating Images that Contain Lesions

Lesion-containing images of the phantom can be obtained directly by imaging

the spheres physically inserted into the phantom. Alternatively, separate images of

the spheres and phantom can be processed into combined images. Three methods

for image creation were considered: the physical method and two image processing

methods.

The method of physical insertion is the best method in many respects. With

the spheres imaged in the lung in this way, the images most closely represent actual

patient images. No additional image manipulation is needed to prepare the images

for the ROC study. Real lesions may be asymmetric, while the simulated lesions are

symmetrical which can detract from their realism. The drawback of this method is

that many images must be acquired to create a wide range of data for the ROC

study. Images in which the spheres were embedded physically in the lung chambers

were not manipulated for the study.

Additive image manipulation combines separate images of the spheres and the

phantom. The placement and intensity of the lesions is determined randomly. An

additive operation on the pixel intensity is used to fuse the two images. A program

written in Matlab was used to implement this method. The advantage of this
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method is that with only a few acquired images a wide range of data can be created

for the ROC study.

XOR image manipulation is similar to the additive method, but it uses an

XOR boolean operation to fuse the two images. If the intensity of a pixel in a

sphere’s image is greater than the intensity of the phantom’s image for that same

pixel, the XOR operation inserts the value from the sphere’s image; otherwise the

phantom image is not altered. Images were generated using all three methods,

although only images from the first two categories were used finally in the ROC

analysis. This is because there is no easily discernible difference between the images

obtained from the additive method and the XOR method and the XOR method

required additional processing steps.

4.3.2 Design of Image Presentation and Confidence Survey

The images consisted of roughly 50% actual positive cases and 50% actual

negative cases. The positive cases consisted of two classes of images. The first class

were images in which the spheres were directly inserted into the lungs and imaged

without any artificial manipulation of the images. The second class of positive

images was created by the additive method described in §4.3.1. Several operations

were done to the simulated lesions before fusion. To simulate a wide range of

pathologic tumor grades or standard uptake values (SUVs), the intensity of the

lesions was randomly scaled. The lesions, without being scaled down, were far too

intense for the torso phantom image and would have made the detection task trivial.

The second operation that was done to the lesions was a rotation followed by a

translation. The placement of lesions should be different in each positive image to

increase the difficulty in identifying the lesions. If the lesions were placed in the
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same region or spot repeatedly, the task of detection would be trivial. The

operations of rotation and translation were also performed using a random number

generator. Although some areas are more likely to be cancerous than others, lesions

can be found almost anywhere within the torso. This conclusion was reached after

an initial conversation with Dr. Bujenovic at OLOLRMC.

Positive images from both methods of inserting lesions were compared by

several graduate students. It appeared that it is not possible to distinguish the

method of creation from simple inspection of most of the images. Although an

algorithm was written to put in Gaussian blurring with the additive method to

account for the spheres being imaged in air compared to water, it was not used.

Due to the increased scatter in water, it was expected that the spheres would be less

localized and more blurred, but the effect was not evident in the physical images

and apparently less substantial than partial volume effect.

In the images, special attention was given to placing the lesions at least a few

centimeters from the Teflon spine insert. The attenuation correction factors for

Teflon are known to have errors on the order of 25% or larger [69]. Teflon is a poor

substitute for bone at 511 keV. The high CT number is incorrectly treated as bone

leading to a linear attenuation coefficient significantly lower than the actual value

for 511 keV photons. This will lead to under correction in the vicinity of the Teflon.

The same activity near the Teflon will appear less intense than if far away from the

Teflon. For the other materials in the phantom, the attenuation correction accuracy

is on the order of 3% [14].

The confidence survey was designed to maximize the value of each viewer’s

responses while minimizing the amount of time the viewer must spend on the image

set [13, 70]–[73]. The complete set of images consisted of 120 images, 61 actual



44

positive images and 59 actual negative images. The observers were given unlimited

time to complete the survey. A three-page training document was given to observers

prior to the start of their survey. The training document was short, to minimize the

time spent on it. The survey training document is given in Appendix B.

The training set consisted of twelve images: five actual negative images, five

actual positive images, and two images of micro hollow spheres in air. A series of

three images were shown that illustrated the additive method for creating positive

images. The process of showing how the simulated lesions were inserted was meant

to illustrate to the observers what they were looking for in the images and to

illustrate that the lesions could be put anywhere and with any intensity. With the

three-page introduction, a verbal explanation was given explaining the survey’s

motivation and disclaiming that the ROC study was not testing the observers but

evaluating the imaging systems. Observers were told that the overall performance of

the observer was not of interest, but rather the relative performance of the two

systems, of the two acquisition modes, or of the reconstruction algorithms. Finally,

the verbal and written instructions included brief explanations of PET imaging

technology and the utility of PET imaging in viewing lesions with higher glucose

metabolism than normal tissue.

The three anatomical regions present in the torso phantom images were

transverse slices containing lung, heart, and liver. Not all three regions were present

in every image. To demonstrate the appearance of each of these regions, the

training set included one positive and one negative image for each of these three

regions. The training set was presented both on paper and on the computer screen.

All observers completing the survey used the same laptop computer, running a

Matlab routine for display.
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The images were displayed as 120 separate windows making it possible for the

observers to put an image aside, or minimize or maximize it individually. Each

image is initially displayed at one quarter of the screen size. This size was chosen to

make the images as clear as reasonably possible without making pixellation overly

apparent.

4.4 Method of ROC Analysis

The principles of ROC analysis were provided in §3.3. This section gives

specific details about the ROC analysis procedures used for this thesis.

4.4.1 Recording and Management of the ROC Database

A number of steps were taken to methodically record and analyze data for the

ROC study. An outline of the procedure in simple stages is

1. Identifying observers

(a) Identifying trained observers (radiologists and oncologists)

(b) Identifying untrained observers (graduate students, post docs and

professors)

2. Recording confidences in observers’ abilities to identify lesions

3. Building database for analysis of results

4.4.2 ROC Analysis Details

This section adds to the general description of ROC methods given in §3.3 of

Chapter 3. The ROC analysis was performed using ROCKIT software developed at
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The University of Chicago. Beta Version 0.9B is available for free download from

The University of Chicago website. The software is a 32-bit application and requires

2 MB of disk space and 2.1 MB of RAM.

The ROCKIT software takes continuous-distributed or discrete ordinal

category diagnostic test results and fits them to a binormal distribution. The data

for this work are a confidence-rated ordinal category diagnostic test. The data was

input into ROCKIT in two ways; to obtain a maximum-likelihood estimate of the

parameters for a conventional binormal model and to calculate the statistical

significance of the difference between two ROC curves in an area test. The area test

is a univariate z-score test of the difference between the Az values that tests the null

hypothesis. A P -value is generated that estimates the probability that the difference

in Az values from the two ROC curves is not due to random data fluctuations.

A sample ROCKIT program run is provided in Appendix A. It describes the

typical commands that might be entered for a ROCKIT session, as well as sample

output tables. The two options of entering the data are matrix format and list

format. For this thesis all the data were entered using the matrix format. This

required compilation of the responses in each category through Access database

queries.

The ROCKIT software uses an iterative algorithm to calculate the binormal

parameters a and b as well as parameter uncertainties and 95% confidence intervals.

For this study the number of iterations needed for convergence to 3 significant digits

was typically 4 iterations. Having the binormal parameters is sufficient to generate

any size set of pairs of TPF and FPF needed for plotting an ROC curve.

Note: The ROC software will not allow idealized inputs and will fail to produce

values for a, b, and Az. Idealized inputs correspond to a perfect test in which
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everything is correctly classified (i.e., the ROC curve in Figure 3.8).

The ROCKIT authors created an Excel macro to produce an ROC curve from

the binormal parameters from the ROCKIT session. The macro only requires two

inputs, the binormal fitting parameters (a, b). The statistical uncertainties obtained

from the ROCKIT software are not reflected on the ROC curve.

4.4.3 Requirements of ROC Analysis

For a valid ROC study, the diagnostic truth must be known, which means one

must either use simulated pathologies or data taken from patients that have a

posteriori been confirmed to be actually positive or actually negative with certainty

(did or did not ever manifest the associated suspected illness). With patient data,

diagnostic truth becomes a very important problem. What criterion should be used

to determine diagnostic truth and to avoid the possibility of no clear classification of

an image? These are two questions easily avoided by using simulated lesions in a

phantom.

In this thesis, truth is dependent on the presence or absence of the simulated

lesions. The classification requirement of the observer comes down to confidence

that the simulated lesions are present in the images. Diagnostic truth is a binary

definitive answer. Future studies could have more than two states of diagnostic

truth. For instance, the observers might be required to classify the image in four

states according to size or intensity [63]. Another possibility for future work would

be continuous classification of lesions based on size or location [64]–[66].

For example, staging of some cancers is commonly done using the TNM system

published by the American Joint Committee on Cancer (AJCC) [74]. The stage of a

cancer is broken into three areas; ‘T’ for the primary tumor, ‘N’ for lymph node
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involvement, and ‘M’ for metastatic tumors. The primary tumor classification,

which is often related to size but can also be related to the extent it has penetrated

tissue boundaries, is generally broken up into four states. Knowing the precise

volume of the spheres, one could ask the observers to stage each lesion. This would

have been much more time consuming for the observers and would have required a

significant reduction in the number of images for the required time to remain the

same for each observer.

In the comparison of the two PET/CT systems, it is important to have a large

sample set with enough images so that differences in performance can be attributed

to the imaging systems as opposed to sampling errors [75]–[81]. The required

sample size for an ROC study can be case dependent, but general guidelines are

given in the literature [57]. The type of study in this thesis is a multiple-reader,

multiple-case (MRMC) ROC study [82]. There are three models for estimating the

required sample size, outlined by Obuchowski et al. [75]. The basic principles of

sampling are that with an unbiased sample, the larger the number of data points the

smaller the uncertainty or the 95% confidence level can become. The more narrow

the 95% confidence level, the better the ROC test can validate or rebuke a given

hypothesis. The expected difference in Az values dictates the sample size required.

The smaller the expected difference in Az values the larger the required sample size.



CHAPTER 5

RESULTS OF ROC ANALYSIS

In §5.1 the results of the ROC analysis are presented for all observers

combined, including most of the generated ROC data curve fits. Section 5.2 goes

into more detail about the observed differences between trained and untrained

observer performance. Section 5.3 discusses the results for diagnostic accuracy,

sensitivity and specificity.

5.1 Overall ROC Analysis Results and Comparisons

A single parameter often used to summarize the performance of observers in a

diagnostic test is the area, Az, under the ROC curve. When comparing two systems,

acquisition modes, sets of observers, reconstruction algorithms, or acquisition times,

the statistical significance of different Az values is sought. There are several ways to

measure statistical significance. Obviously, translating statistical significance into

clinical significance requires input and evaluation by physicians, administrators, and

physicists.

The results for the binormal parameters, a and b, and Az for all observers,

which have been broken down by the categories of scanner, different acquisition

mode, and reconstruction algorithm, are presented in Table 5.1. These results and

the corresponding ROC curves are discussed in §5.1.1 through §5.1.4.

5.1.1 Overall ROC Results for Trained and Untrained Observers

Figure 5.1 shows a composite ROC curve for all observers and all parameters

lumped together. It also shows separate curves with all parameters lumped together

49
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Table 5.1. Table of combined overall Az results from ROC curves,
tabulating the areas, Az, under given ROC curves.

a± σa b± σb Az ± σAz

Overall 1.19±0.60 1.09±0.58 0.79±0.01
GE 1.05±0.07 1.08±0.07 0.76±0.01
CTI 1.57±0.13 1.06±0.11 0.86±0.02
2D GE 0.92±0.09 0.96±0.08 0.75±0.02
3D GE 1.24±0.11 1.23±0.11 0.78±0.02
ALL 3D 1.39±0.08 1.16±0.08 0.82±0.01
4 min 1.02±0.09 1.03±0.09 0.76±0.02
16 min 1.30±0.08 1.10±0.07 0.81±0.01
OSEM 1.05±0.07 0.93±0.07 0.78±0.02
3D FOR 1.24±0.11 1.23±0.11 0.78±0.02
DIFT 2.14±0.31 1.66±0.31 0.87±0.03

for the trained and untrained observers; these separate curves are discussed in detail

in §5.2. The all-observer ROC curve is biased towards the curve for untrained

observers because of the larger number (N = 12) of untrained observers than

trained observers (N = 5). Observers are classified as trained if they routinely make

diagnostic decisions based on medical images as part of their profession.

5.1.2 Results for All Observers Comparing Scanner Acquisition Modes

The combined observer performance is superior for the Reveal HD system

compared to the 2D or 3D acquisition modes of the Discovery ST scanner in this

study (Figure 5.2). Surprisingly, the Az value (0.783± 0.018) for the 3D acquisition

mode of the Discovery ST scanner is larger than Az (0.749± 0.020) for the 2D

Discovery ST acquisition mode. This contradicts our initial hypothesis 1 of

Chapter 2. Recall that the reasoning for hypothesis 1 was

“The Discovery ST 2D mode of acquisition is used preferentially for
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Figure 5.1. Composite ROC curves combining all scanner parame-
ters for each observer class.

whole-body imaging at MBPCC over the 3D mode. There are few

clinical protocols in which the images at MBPCC are taken in 3D mode.

An initial survey of patient images created with each mode from the

Discovery ST by an OLOLRMC radiologist and an LSU physicist

indicated that the 2D mode was generally preferable.”

One must note that the default acquisition parameters and reconstruction

algorithms were used for the initial survey.
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Figure 5.2. ROC curves comparing the two PET/CT scanners,
summarized over all observers; all other parameters are lumped to-
gether.
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5.1.3 Results for All Observers Comparing Reconstruction Algorithms

Some of the sinogram data were reconstructed with more than one algorithm,

but most of the image data used in this study were reconstructed with only one

algorithm. Data from the 3D acquisition mode were reconstructed by a 3D

algorithm, and from the 2D acquisition mode data were reconstructed by a 2D

algorithm. Alternatively, one could have reconstructed all data with the same

reconstruction algorithm, such as FBP, to facilitate comparison. However, the 3D

data would still have required some sort of pre-reconstruction processing or

rebinning, so the comparison is still not exact. Therefore, we chose to compare the

default clinical reconstruction algorithms to maintain similarity to actual patient

imaging situations.

Figure 5.3 shows ROC curves comparing three reconstruction algorithms. The

comparison suggests the superiority of the DIFT algorithm compared to the other

two algorithms. Figure 5.4 shows images from the Reveal HD reconstructed by each

method. The image at the top left is much clearer and is a result of the iterative

reconstruction algorithm. The image at top right is reconstructed with the DIFT

algorithm. The image on the bottom, exhibiting the most reconstruction artifacts,

is reconstructed with FBP. The DIFT and FBP images exhibit more reconstruction

artifacts than the OSEM image exhibits. The images using iterative reconstruction

are visually preferable to those using DIFT or FBP, but this seems not to translate

to superior lesion detection ability for observers.

Ideally, this analysis would have been done with the same images on the same

system. The results of this ROC curve require further analysis, subgrouping the

data into categories that can better isolate the parameter being considered.

Recall that the images are all scaled to a relative intensity. The single highest
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activity voxel in the entire volume will have an intensity of 215 = 32768. The

streakiness of the DIFT and FBP images largely results from a finite number of

projections in the PET data. Clinically, the background region outside the object

may be marked or windowed to minimize the appearance of the streakiness.

Figure 5.3. Comparison of ROC results for three different image
reconstruction algorithms.

5.1.4 ROC Results for All Observers Comparing Acquisition Times

Figure 5.5 is an ROC curve displaying lumped results of all scanners and all

acquisition modes for 4-minute and 16-minute acquisitions. For each 4-minute
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Figure 5.4. Torso phantom images comparing three reconstruction
algorithms. Clockwise from top left are images reconstructed with
OSEM, DIFT and FBP. The torso phantom was in the prone orien-
tation for this acquisition set.
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acquisition, a 16-minute scan was acquired also with all other scan parameters held

fixed. The primary difference in the two images is that the number of counts in the

16-minute acquisition should be roughly four times as large. The standard error in

pixel intensity due to counting statistics should be reduced by a factor of two.

One would expect the improved statistics to correspond to significantly better

diagnostic image quality exhibited by much larger Az values. The 16-minute

acquisition’s Az (0.808± 0.013) is only slightly higher than the 4-minute

acquisition’s Az (0.762± 0.019). The consequences of increased patient discomfort,

increased patient motion, and decreased patient throughput probably greatly

outweigh the diagnostic benefit of long acquisition times.

5.2 ROC Results for Trained Observers

5.2.1 Differences Between Trained and Untrained Observers

Figure 5.1 showed ROC curves with all parameters lumped together (trained

observers as well as untrained observers). As noted, the all-observer ROC curve is

biased towards the curve for untrained observers because of the larger number

(N = 12) of untrained observers than trained observers (N = 5). Observers are

classified as trained if they routinely make diagnostic decisions based on medical

images as part of their profession.

With a low threshold for false positives (e.g., FPF=0.05), trained observers

exhibit a much higher TP rate. The untrained observers only correctly identify 20%

of the TPs at this level, while the trained observers correctly identify 65%. It is

immediately apparent that the trained observers out-perform the untrained

observers in the study of lesion detection in the torso phantom. The ROC curves in
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Figure 5.5. Comparison of ROC results for different image acquisi-
tion times. All other parameters are lumped together.
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Figure 5.1 clearly indicate superior performance in this test is highly correlated to

experience with reading PET images. The trend is further supported by

examination of individual scores of trained observers. The dedicated PET nuclear

medicine physician in this study outperformed the other trained observers.

The comparison of scanners is broken down for trained and untrained observers

in Table 5.2. Figure 5.6 is a bar chart visualizing the results in Table 5.2. Az values

are charted as triplets of {Total, Trained, Untrained} in the bar chart. In all

categories, the trained observers outperformed the untrained observers. In most

categories, this difference ranged from 8.7% to 15.4%. The clinically-unused

Discovery ST 3D acquisition mode produced a difference of 11.6% while the DIFT

reconstruction mode produced a very large difference of 18.7%.

Table 5.2 summarizes the differences between trained and untrained observers

for each comparison category. Figure 5.7 displays the percent differences visually.

Some interesting trends are apparent in Table 5.2 and Figure 5.7. First, comparing

acquisition length, the trained observers outperformed the untrained observers by a

greater margin for the longer acquisition time than for the shorter acquisition time.

This is probably a result of increased clarity of anatomical structures, which may

preferentially decrease false positives for the trained observers compared to the

untrained observers. The trained observers may be able to pickup additional

anatomical clues of which the untrained observers are unaware. Second, when

comparing the reconstruction algorithms, the effect of training is more apparent

with the reconstruction methods that give apparently poor image quality. Our

interpretation is that trained observers are able to read around the reconstruction

artifacts for DIFT and 3D FORE, while the apparent benefit of the OSEM

algorithm is that clearer images only increase the confidence of the untrained
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Table 5.2. Comparison of Az results for trained versus untrained
observers.

Category Group a± σa b± σb Az ± σAz

Overall Trained 1.41±0.12 0.65±0.14 0.88±0.02
Untrained 1.04±0.07 1.08±0.07 0.76±0.01

GE Trained 1.27±0.13 0.61±0.16 0.86±0.02
Untrained 0.93±0.08 1.10±0.07 0.73±0.02

CTI Trained 1.79±0.27 0.77±0.28 0.92±0.02
Untrained 1.36±0.14 0.93±0.10 0.84±0.02

2D GE Trained 1.16±0.17 0.55±0.20 0.85±0.03
Untrained 0.80±0.10 0.95±0.09 0.72±0.02

3D GE Trained 1.40±0.20 0.68±0.24 0.88±0.03
Untrained 1.13±0.13 1.26±0.12 0.76±0.02

ALL 3D Trained 1.57±0.16 0.72±0.18 0.90±0.02
Untrained 1.24±0.09 1.14±0.08 0.79±0.02

4 Min Trained 1.15±0.16 0.51±0.18 0.85±0.04
Untrained 1.02±0.11 1.05±0.10 0.76±0.02

16 Min Trained 1.59±0.18 0.71±0.19 0.90±0.02
Untrained 1.07±0.09 1.10±0.08 0.76±0.02

OSEM Trained 1.16±0.14 0.56±0.16 0.84±0.03
Untrained 1.00±0.09 0.95±0.07 0.77±0.02

3D FORE Trained 1.40±0.20 0.68±0.24 0.88±0.029
Untrained 1.13±0.13 1.26±0.12 0.76±0.02

DIFT Trained 2.97±0.95 1.55±0.99 0.95±0.037
Untrained 1.26±0.28 1.39±0.25 0.77±0.04
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Figure 5.6. Summary of Az values grouped by comparison param-
eter for all observers, trained observers and untrained observers.

observers as artifacts are removed.

While the untrained observer results are interesting, the results for the trained

observers should be the guide for decisions based on ROC analysis. Figure 5.8 shows

comparative performance for the trained observer for the different reconstruction

algorithms. As noted with the performance for all observers, the DIFT algorithm

produces a larger Az value than the other algorithms. Although OSEM produces

visually nicer images, it only outperforms DIFT at extremely low false positive rates.

Although the visual clarity of the OSEM algorithm images is superior to DIFT
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Table 5.3. Summary of Az values and relative differences.

Category Trained Untrained % Difference∗

Overall 0.882 0.762 13.6
GE 0.861 0.734 14.8
CTI 0.921 0.841 8.7
2D GE 0.846 0.720 14.9
3D GE 0.875 0.759 3.0
ALL 3D 0.899 0.794 11.7
4 min 0.847 0.759 10.4
16 min 0.903 0.764 15.4
OSEM 0.844 0.766 9.24
3D FOR 0.875 0.759 13.26
DIFT 0.946 0.769 18.7
∗% Diff. = |Az(trained)− Az(untrained)|/Az(trained)× 100.

and FBP, this does not translate into superior lesion detectability. This surprising

result suggests the possible loss of information in this type of reconstruction.

The areas under the ROC curves for the trained observers were

Az = 0.844± 0.027 for OSEM, Az = 0.876± 0.029 for 3D FORE, and

Az = 0.946± 0.037 for DIFT. The 3D FORE technique is a method of estimating 2D

transaxial sinograms from the 3D data acquisition using Fourier rebinning which is

then followed by FBP. The DIFT algorithm is a direct 3D inverse Fourier transform.

The results indicate that the ability of trained observers to identify lesions in

these attenuated corrected PET images is inversely proportional to the

sophistication and time of the reconstruction algorithm.This is in contrast to the

untrained observers who have statistically identical performance across algorithms.

The results of trained observer performance for the different scanner

acquisition modes are shown in Figure 5.9. The default operating mode for the

Discovery ST scanner at MBPCC is 2D although 3D mode is available. The Reveal
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Figure 5.7. Chart of percentage difference in ROC curve Az values
for trained versus untrained observers.

HD scanner only has a 3D operating mode. Comparing the Reveal HD to the

Discovery ST 2D mode, one sees that the Reveal HD outperforms the Discovery ST

2D mode. Interestingly, the nuclear medicine and x-ray technologists who work with

both machines prefer working with the Discovery ST. This suggests that while the

software and interface might be superior on the Discovery ST scanner, the

diagnostic image quality is not.

The default reconstruction algorithms were used for this comparison. Thus, the

difference reflects both 2D vs. 3D, but also different reconstruction algorithms;

these two issues cannot be separated in this ROC study. For a refined study, all

images should be reconstructed in the same basic way. A 2D filtered backprojection
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Figure 5.8. ROC curve for trained observers with different recon-
struction algorithms.

Figure 5.9. Trained observer ROC results comparing image scanner
acquisition modes.
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algorithm with ramp filter would be a logical choice, although one must still deal

with the issue of resampling 3D data for use with a 2D algorithm.

Comparing 2D versus 3D acquisition modes of the Discovery ST there is a

slightly higher Az value (0.8755± 0.029) for the 3D mode than for the 2D mode

(Az = 0.8460± 0.033). This difference is less than a one sigma effect. The

detectability of lesions in the two acquisition modes is statistically equal and no

conclusion can be drawn about the superiority of one mode to the other.

The greater the sensitivity of the scanner, the less the effect of increased

duration should be on increased detectability of lesions. For both scanners, the data

indicate superior lesion detectability with increased scan duration for the trained

observers. The Az of 0.9030± 0.017 for 16-minute acquisitions is significantly higher

than the Az of 0.8427± 0.035 for the 4-minute acquisitions. The difference in the

two Az values for trained observers is larger than the difference for the overall or

untrained observers. We conclude that a trained observer is able to ascertain

additional information from higher-count scans more so than an untrained observer.

These ROC curves, combined for all scanners and acquisition modes, are shown in

Figure 5.10.

It is clear that with the levels of activity used, longer scan times do improve

diagnostic image quality. The scans were acquired with count rates of

10–30 thousand counts per second (kcps) in the 2D mode and 50–230 kcps in the 3D

mode. For a typical scan taken with the Discovery ST, count rates of 10 kcps total,

9 kcps trues, and 1 kcps random and scattered events, correspond to approximately

90% true events and 10% random and scattered events in the 2D mode. In the 3D

mode the percentage of true events dropped to about 84% of all events with 16%

random and scattered events; the rates were 50 kcps total, 42 kcps trues, and 8 kcps
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random and scattered events. The relationship of true to scattered events is not a

simple proportion in 2D or 3D mode [14]. Scans in this project were acquired with

activities nowhere near the 50% random rate level upper threshold. For the

Discovery ST, this rate is 686 kcps for the 2D mode and 921 kcps for the 3D

mode [15].

Figure 5.10. Trained observer ROC results for different acquisition
times.

5.2.2 Comparisons of Az Values for Trained Versus Untrained Observers

Figure 5.11 reproduces the summary Az values for trained and untrained

readers from Table 5.2 and Figure 3.6. Figure 5.11 also indicates the average and
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range of the standard deviation about the mean (gray rectangular boxes) for the

trained and untrained observers. For the untrained observers there is very little

fluctuation across parameters. This could have been a bias due to the method of

image fusion or due to the heterogeneity of the untrained group. The poor

performance of some untrained observers could be washing out any effects of the

system parameters. With a larger number of observers, the data could have been

split up into additional subgroups, perhaps better isolating the effects of the system

parameters on lesion detectability.

Figure 5.11. Comparison of trained observer Az results alongside
untrained observer Az results with mean and standard deviation
across parameters

The classic method to improve image quality is to increase acquisition length.
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For the trained observers, the effect is as expected, but the increased time produces

little benefit for the untrained observers. The obvious conclusion is that observers

being unfamiliar with what they are looking at, is a bigger problem than the noise

level in the image. For example, images containing the myocardium might be

misclassified by the untrained observers due to lack of anatomical knowledge

regardless of the noise level.

The motivation behind reconstucting images with iterative algorithms is to

improve image quality and make more visual appealing. Iterative algorithms are

more computationally expensive than the other algorithms considered. It was

expected that the diagnostic image quality would be better for the OSEM

algorithm. The untrained observers performed similarly irrespective of the

reconstruction algorithm, while the trained observers performed worse with the

iterative algorithm than for the other two algorithms. This unexpected result

requires further study to verify and explain.

5.3 Diagnostic Accuracy, Sensitivity and Specificity

The ROC survey was administered as a confidence-rating questionnaire for all

but three of the trained observers. Those three observers were required to give a

“yes or no” response to lesion presence with the same image set. The type of survey

they were asked to respond to was a “two alternative forced choice” (2-AFC)

experiment. Swets and Pickett showed that the area under the ROC curve will give

the same value for both methods of administering the test [83]. One can conclude

that using the 2-AFC test for three observers does not effect the results presented in

previous sections.

Literature also suggests that the 2-AFC experiment takes less time to
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administer than the confidence level test [84]. With the 2-AFC experiment the

observer is only required to create a single decision boundary, while for a five-level

confidence interval the user must have four decision boundaries to account for all

five intervals. In this research, the length of time in evaluating the images was

actually slightly longer for the observers doing the 2-AFC evaluation than for those

doing the confidence rating evaluation.

The ROC analysis provides more information with the five-choice confidence

responses than with the 2-AFC experiment. However, the basic quantities of

sensitivity, specificity, and accuracy for classifying the value of a diagnostic test can

be assessed equally for either method of administering the survey. To calculate

these from the confidence survey, positive responses (rating categories one and two)

and negative responses (rating categories three, four and five) are lumped together.

Table 5.4 shows the sensitivity, specificity and accuracy calculated for each of

the parameters considered in comparing the two scanners. In the following tables

the uncertainties are based on a standard deviation σ = 1/(2
√

n), where n is the

number of images viewed [85], and the assumption that each view is independent is

less plausible for the same image viewed by multiple observers. The errors are

therefore probably slightly smaller than they would be if the viewed images were

truly independent events.

Immediately apparent is the far superior ability of trained observers at correctly

identifying actual positive images. The trained observers had better accuracy and

sensitivity for all acquisition modes, compared to the untrained observers. However,

specificity was not consistently better for the trained observers than the of untrained

observers. The trained observers, unlike the untrained observers, were more likely to

produce false positives than false negatives. The trained observers were willing to
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Table 5.4. Sensitivity, specificity and accuracy for all observers,
trained observers, and untrained observers, for all parameters com-
bined and for each category of acquisition mode.∗

Category All obsv. Trained Untrained

Overall: Sensitivity 0.78±0.02 0.88±0.03 0.73±0.02
Specificity 0.69±0.02 0.70±0.03 0.69±0.02
Accuracy 0.73±0.01 0.79±0.02 0.71±0.01

All GE: Sensitivity 0.79±0.02 0.87±0.04 0.76±0.02
Specificity 0.63±0.02 0.65±0.04 0.62±0.02
Accuracy 0.71±0.01 0.76±0.03 0.69±0.02

CTI: Sensitivity 0.74±0.03 0.90±0.05 0.65±0.04
Specificity 0.84±0.03 0.79±0.05 0.87±0.04
Accuracy 0.79±0.02 0.85±0.04 0.76±0.03

GE 2D: Sensitivity 0.82±0.03 0.86±0.05 0.80±0.03
Specificity 0.55±0.03 0.62±0.05 0.52±0.03
Accuracy 0.68±0.02 0.74±0.04 0.66±0.02

GE 3D: Sensitivity 0.76±0.03 0.88±0.05 0.71±0.03
Specificity 0.72±0.03 0.69±0.05 0.73±0.03
Accuracy 0.74±0.02 0.79±0.04 0.72±0.02

All 3D: Sensitivity 0.75±0.02 0.89±0.04 0.69±0.02
Specificity 0.77±0.02 0.74±0.04 0.79±0.02
Accuracy 0.76±0.01 0.82±0.03 0.74±0.02

∗ All uncertainties based on a standard deviation σ = 1/(2
√

n),
where n is the number of images viewed.

err towards a positive diagnosis, while the untrained observers were hesitant to give

a positive result. The results for accuracy mirror those for the area under the ROC

curve. The accuracy for the Reveal HD is higher than the Discovery ST in either 2D

or 3D mode. Also, 3D mode for Discovery ST gives a larger accuracy than 2D mode.

Table 5.5 gives the sensitivity, specificity, and accuracy for the acquisition

lengths of 4 minutes and 16 minutes. The 4 minute acquisition time exhibits a

particularly low specificity for the trained observers. The conclusion is that long

acquisitions decrease the number of false positives. This ideally leads to decreased
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patient costs in terms of additional diagnostic tasks and unnecessary biopsies.

Other confounding effects such as patient motion and discomfort are not addressed

in a phantom study such as that reported here.

Table 5.5. Comparison of the effect of acquisition times on the
sensitivity, specificity and accuracy for all observer classes.∗

Category All obsv. Trained Untrained

4 Minute: Sensitivity 0.8±0.03 0.89±0.05 0.81±0.03
Specificity 0.57±0.03 0.54±0.05 0.58±0.03
Accuracy 0.70±0.02 0.72±0.04 0.70±0.02

16 Minute: Sensitivity 0.74±0.02 0.88±0.04 0.68±0.03
Specificity 0.76±0.02 0.78±0.04 0.75±0.02
Accuracy 0.75±0.01 0.83±0.02 0.71±0.02

∗ All uncertainties based on a standard deviation σ = 1/(2
√

n),
where n is the number of images viewed.

Table 5.6 gives sensitivity, specificity, and accuracy for the different

reconstruction algorithms. Interestingly, the sensitivity of trained observers with

DIFT was 1.0; there were no misclassifications of actual positives with the

reconstruction algorithm that coincidentally is the fastest. This is likely due to

having a smaller image set for the DIFT (20) algorithm than for the other two

algorithms, 3D FORE (40) and OSEM (60). There is a suggested bias in the small

DIFT image set toward being too easy as compared to the entire set of images.
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Table 5.6. Comparison of reconstruction algorithms in the cate-
gories of sensitivity, specificity and accuracy for all observer classes.∗

Category All obsv. Trained Untrained

OSEM: Sensitivity 0.78±0.02 0.84±0.04 0.76±0.03
Specificity 0.65±0.02 0.67±0.04 0.64±0.03
Accuracy 0.71±0.02 0.75±0.03 0.70±0.02

DIFT: Sensitivity 0.78±0.05 1.00±0.07 0.60±0.07
Specificity 0.82±0.05 0.82±0.07 0.82±0.07
Accuracy 0.80±0.03 0.91±0.05 0.71±0.05

3D FORE: Sensitivity 0.76±0.03 0.88±0.05 0.71±0.03
Specificity 0.72±0.03 0.69±0.05 0.73±0.03
Accuracy 0.74±0.02 0.79±0.04 0.72±0.02

∗ All uncertainties based on a standard deviation σ = 1/(2
√

n),
where n is the number of images viewed.



CHAPTER 6

CONCLUSION

We have found that the diagnostic image quality of a PET image is more

closely related to physical design or actual performance standards than to initial

inspection of visual image quality. In general, the Reveal HD performs better than

the Discovery ST for the task of lesion detection in an anthropomorphic phantom.

The Reveal HD has smaller crystals and better spatial resolution, aspects of

performance that are closely related to the detection of small lesions. System

sensitivity for 3D acquisition mode is comparable for the two systems. Table 6.1

lists the performance parameters for the two scanners considered in this thesis.

Table 6.1. Scanner performance parameters.∗

Parameter Discovery ST 2D† Discovery ST 3D† Reveal HD‡

Spatial Resolution Axial 4.56 mm 5.68 mm 4.2 mm

Spatial Resolution Transaxial 6.28 mm 6.28 mm 4.5 mm

Sensitivity 8.6 kcps/kBq/cc 37 kcps/kBq/cc 38 kcps/kBq/cc

∗ Spatial resolutions are measured @ FWHM.
† See reference [14].
‡ See reference [16].

The technologists reported liking the Discovery ST software more than the

Reveal HD software, but this does not influence diagnostic image quality. The

conclusion is that investing in improved hardware is better than investing in

“better” software, at least in terms of diagnostic image quality. It should be noted

that the Discovery ST software is more stable and less prone to downtime due to

72
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computer difficulty, as observed during the course of this project and noted by the

technologists.

6.1 Validation of Hypotheses

The hypotheses of Chapter 2 were written prior to the acquisition of any image

data or ROC analysis. Each hypothesis is reviewed in turn, with comments on the

results that either verify or deny the hypothesis.

Hypothesis 1. An ROC study will confirm that 2D acquisition of PET/CT data

produces superior diagnostic image quality exhibited by a larger Az value for

the ROC curve than 3D acquisition.

Result : Although the Discovery ST 2D mode of acquisition is used

preferentially for whole-body imaging at MBPCC, it did not perform as

well in this task as 3D mode. The 2D mode images were more visually

appealing. This is partly due to the 2D OSEM algorithm disallowing

negative pixel values, which decreases the visual artifacts in the

reconstructed image. The results are contradictory to our hypothesis.

The Az values for all observer categories were higher for the 3D mode. A

limitation to these results is that the images from the two acquisition

modes were not reconstructed with the same algorithm.

Hypothesis 2. An ROC study will show that the Discovery ST scanner operated

in 2D mode shows inferior diagnostic image quality compared to the Reveal

HD scanner.

Result : The ROC analysis produced Az = 0.921± 0.022 with the Reveal

HD scanner for trained observers. The Discovery ST 2D mode of
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acquisition, which has a larger spatial resolution and worse sensitivity

than the Reveal HD scanner as specified by the manufacturers,

performed worse in the ROC analysis with Az = 0.846± 0.033 for the

trained observers. The hypothesis was confirmed.

Hypothesis 3. An ROC study will show that the Discovery ST scanner operated

in 3D mode will show inferior diagnostic image quality compared to the

Reveal HD scanner.

Result : The hypothesis was confirmed. The trained observers performed

better on the Reveal HD scanner. The Discovery ST 3D mode of

acquisition has virtually the same sensitivity as, but inferior spatial

resolution to, the Reveal HD. The Reveal HD trained observer

Az = 0.921± .022 is larger than the Discovery ST trained observer

Az = 0.876± .029.

Hypothesis 4. An ROC study will show that the iterative reconstruction

algorithm yields superior diagnostic image quality to both the 3D FORE and

DIFT algorithms.

Result : Although the images reconstructed with the iterative OSEM

algorithm are more visually appealing and contain fewer apparent

reconstruction artifacts, this did not make it easier to identify lesions in a

PET image. The hypothesis was incorrect.

Hypothesis 5. Superior system performance parameters correlate to superior

diagnostic image quality.

Result : This hypothesis was proven correct. Smaller crystals, more
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detectors, and both more and thinner slices are all physical parameters

that combine to determine the system performance parameters of axial

and transaxial resolution and sensitivity. Higher Az values were obtained

from the scanner with higher resolution and/or sensitivity.

Hypothesis 6. A longer acquisition improves the diagnostic image quality

compared to shorter acquisitions.

Result : Increasing the number of counts by increasing the acquisition

time does improve the diagnostic image quality for the acquisition

lengths considered. The hypothesis is correct. The limitation of the

phantom study is that it neglects potential issues of patient discomfort

and motion due to longer acquisitions.

6.2 Proposed Future Related Projects

We have identified a variety of future studies or extensions of this project.

� Use patient data (One of the radiologists commented on the lack of realism in

the phantom images). Patient data, as compared to phantom data, provides

increased variety at the expense of increased complexity.

� The relevance of this work to radiation treatment planning would be better if

the diagnostic task was extended to measurements of tumor volumes. This

additional complexity would require a set of observers familiar with a common

software platform that provides a measurement feature. The accuracy with

which tumor boundaries are delineated has consequences on both cure rates

and complications.
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� Allow for CT images to be registered to the PET images. Using a PET/CT

system to acquire image data, but only using the attenuation correction from

the CT neglects the full utility of the PET/CT system. A diagnostic task

using the combined image data must be identified. A common method of

registration is probably necessary if combining data sets from different

PET/CT scanners.

� Use a larger sample of radiologists. The trained reader population sample size

collected in this thesis is too small. A larger set would increase the significance

and ideally minimize certain systematic influences on the results due to

individual responses.

� Similar to extending the study to delineate tumor boundaries, including the

measurement of SUV would be interesting. This would allow for the possibility

of incorporating classification or staging of lesions into the diagnostic task.

� A check for consistency of the observers should be added. For a portion of the

readers, a second viewing would be an important check on the quality of the

observers responses to the image set.

During the writing of this thesis an article was published discussing the current

debate of who should read PET/CT images [86]. Conventionally, radiologists read

CT scans and nuclear medicine physicians read PET scans. Registered PET/CT

images may be a significant weapon in the diagnostic arsenal, but the question of

who should read these images has become a turf war. Whether the reading should

be a combination of both type of readers or whether one discipline can serve by

obtaining additional training, there is not yet a standard for how registered

PET/CT images should be read.
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It would be a very interesting future study to investigate the performance of

dedicated PET readers (nuclear medicine physicians) relative to dedicated CT

readers (radiologists) for a combined diagnostic task on PET/CT. For the observers

in this thesis, the one dedicated PET reader outperformed the other trained readers.

Of course, a caveat to this observation is that the diagnostic task in this thesis was

not a PET/CT task, but rather a task PET alone. The sample size of dedicated

PET readers at MBPCC and OLOLRMC is too small to have addressed this issue

in this project, even with a suitable PET/CT task.
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APPENDIX A

SAMPLE ROCKIT PROGRAM RUN

The following listing shows the interactive command style user interface and

responses from a user for a typical ROCKIT job. In this listing the software’s

prompted menu/UI lines, as well as a user’s input, are prefixed by >, additional

comments are added [in square parentheses in slanted roman font], which would not

obviously really be seen in the sample ROCKIT session, they are included in the

listing for explanatory purposes only. That is, if you were using ROCKIT you

wouldn’t actually type or see any of the comments in the square brackets in what

follows.

Entry into the ROCKIT software

> [Prompt:] Do you want to use data from a previously created

input file for the next run? (y/n, or q to quit)

> [Response:] n

[Reason: It is not necessary to create an input file prior

to using the ROC software.]

> [Prompt:] Do you want to create a file to store the data

you will input? (y/n, or r to restart)

> [Response: n]

[Reason: It is not necessary to create an input file. Data

entry is simple.]

> [Alternate Response:] y

84
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[Reason: To be able to edit input or rerun program!]

> [Prompt:] Do you want a (F)ull, (C)oncise or (N)o OUTPUT file?

> [Response:] n

[Reason: The screen output will give the parameters needed

for creating the ROC curve.]

> [Prompt:] Do you want (F)ull or (C)oncise Screen output?

> [Response:] c

[Reason: The parameters I need are the binormal fitted

(a, b and Az) which are obtainable from the concise screen output.]

> [Prompt:] Enter data description (up to 60 characters

including blanks):

> [Response:] Physician complete response

[Reason: This is just header information, which can be used

for bookkeeping.]

> [Prompt:] With Rating-Data Matrices, at most 2 datasets can

be entered. Otherwise, up to 5 datasets may be input

How many data sets do you wish to enter (1-5)?

> [Response:] 1

[Reason: This example is for a single data set. The software

tends to crash for larger numbers of data sets.]

> [Prompt:] Enter Description for Condition 1: (12 chars max)

> [Response:] GE Discovery

[Reason: This is just header information, which can be used

for bookkeeping.]

> [Prompt:] You are entering 1 datasets
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1

GE Discovery

Are the data for condition 1 collected on a (D)iscrete

rating or (C)ontinuous interval scale (D or C)?:

> [Response:] C

[Reason: The test that was performed is a confidence level test with five

discrete values as possible responses.]

> [Prompt:] Is category (1) or (N) indicative of

Actually-Positive cases (1 or N)?:

> [Response:] 1

[Reason: Response 1 indicates the highest confidence that the observer

has successfully identified a lesion.]

> [Prompt:] Will you be entering the data in (M)atrix

or (L)ist form?

> [Response:] M

[Reason: This is the simplest way to enter the data. For

actual positive cases tally up the number of each category

responses and then for actual negative cases do the same.]

> [Prompt:] How many categories does the discrete rating scale

contain?: (3-20)

> [Response:] 5

[Reason: This is the total number of possible responses that the observer

can choose from.]

> [Prompt:] For Condition 1: GE Discovery

Enter the Total Number of Actually-Negative Cases
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(an integer):

> [Response:] 10

[Reason: If there are 20 images and 10 are actually negative with a

single onetime observer this would be a correct input.]

> [Prompt:] Beginning with category 1 and separated by blanks,

Enter (on one line, integers only) the number of responses to

Actually-Negative cases in each category:

1 2 3 4 5

> [Response:] 2 2 2 2 2

[Reason: The program will give an error if the total does not equal the

input from the previous prompt.]

> [Alternate Response:] 2 3 3 3 3

[Readout:] ERROR: the total number of cases (14)is

not equal to the number entered ( 10)

[Comment: At this point the program will will return to the

original prompt]:

> [Enter the Total Number of Actually-Negative Cases

(an integer):]

> [Prompt:] Enter the Total Number of Actually-Positive Cases

(an integer):

> [Response:] 10

[Reason: If there are 20 images and 10 are actually positive

with a single onetime observer this would be a correct

input.]
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> [Prompt:] Beginning with category 1 and separated by blanks,

Enter (on one line, integers only) the number of responses to

Actually-Positive cases in each category:

1 2 3 4 5

> [Response:] 2 2 2 2 2

[Reason: The program will give an error if the total does not

equal the input from the previous prompt.]

At this point the screen output is given.

Date - 18-May-05

Time - 16:25:50

ROCKIT (Windows95 version 0.9.1 BETA):

test

Maximum Likelihood Estimation of the Parameters

a Single Binormal ROC Curve

Name of Input File being used: 77777777777777777777

Condition 1: trues

Total number of actually-negative cases = 10.

Total number of actually-positive cases = 10.
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Data effectively collected in 5 categories.

Category 1 represents the strongest evidence of positivity.

(e.g., that the disease is present)

Response Data:

Category 1 2 3 4 5

Actually-Negative Cases 2 2 2 2 2

Actually-Positive Cases 2 2 2 2 2

--- program is running; please wait ---

Operating Points Corresponding to the Input Data:

FPF:.000.200.400.600.800 1.000

TPF:.000.200.400.600.800 1.000

-------------------------------------------------

Initial Estimates of the Binormal ROC Parameters:

--------------------------------------------------

a =.0000

b = 1.0000

z(k) =.842.253 -.253 -.842
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Procedure Converges after 3 Iterations

==================================================

Final Estimates of the Binormal ROC Parameters

===================================================

Binormal Parameters and Area Under the Estimated ROC :

a = 0.0000

b = 1.0000

Area (Az) =.5000

1: z(k) = -.842 -.253.253.842

Estimated Standard Errors and Correlation of these Values:

Std. Err. (a) =.4722

Std. Err. (b) =.4621

Corr(a,b) = 0.0000

Std. Err. (Az) =.1332

Symmetric 95% Confidence Intervals

For a : ( -.9255,.9255)

For b : (.0942, 1.9058)

Asymmetric 95% Confidence Interval

For Az: (.2564,.7436)
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Estimated Binormal ROC curve, with Lower and Upper

Bounds of the Asymmetric Point-wise 95% Confidence

Interval for True-Positive Fraction at a Variety

of False-Positive Fractions:

FPF TPF (Lower Bound, Upper Bound)

.005.0050 ( 0.0000 ,.4737 )

.010.0100 ( 0.0000 ,.4900 )

.020.0200 ( 0.0000 ,.5095 )

.030.0300 (.0001 ,.5231 )

.040.0400 (.0002 ,.5340 )

.050.0500 (.0003 ,.5434 )

.060.0600 (.0006 ,.5518 )

.070.0700 (.0010 ,.5596 )

.080.0800 (.0014 ,.5669 )

.090.0900 (.0021 ,.5738 )

.100.1000 (.0028 ,.5804 )

.110.1100 (.0038 ,.5868 )

.120.1200 (.0049 ,.5930 )

.130.1300 (.0061 ,.5991 )

.140.1400 (.0076 ,.6051 )

.150.1500 (.0093 ,.6110 )

.200.2000 (.0207 ,.6396 )
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.250.2501 (.0373 ,.6681 )

.300.3001 (.0589 ,.6971 )

.400.4002 (.1138 ,.7582 )

.500.5000 (.1773 ,.8227 )

.600.5998 (.2418 ,.8862 )

.700.6999 (.3029 ,.9411 )

.800.8000 (.3604 ,.9793 )

.900.9000 (.4196 ,.9972 )

.950.9500 (.4566 ,.9997 )

Estimates of Expected Operating Points on fitted ROC

curve, with lower and upper bounds of asymmetric 95%

confidence interval along the curve for those points:

Expected operating point Lower bound Upper bound

( FPF , TPF ) ( FPF , TPF ) ( FPF , TPF )

(.4000,.4000) (.1313,.1313) (.7302,.7302)

(.6000,.6000) (.3160,.3160) (.8378,.8378)

(.8000,.8000) (.5436,.5436) (.9422,.9422)

(.5000,.5000) (.1930,.1930) (.8070,.8070)

At this point the ROCKIT job is finished. This is the end of Appendix A.

Check that the line spacing is still doublespace. The next appendix is about ROC

curev errors, the one aafter that has some weid Matlab worksheet stuff. I hope

this is sstil double-spaced.



APPENDIX B

SURVEY INSTRUCTIONS DOCUMENT

Instructions for evaluating images
The basic idea is to look at a series of images acquired from a PET/CT scanner

and assess the likelihood of pathology based on the distribution of the radioisotope

18F. The images with pathology will differ from the normal or negative images with

the presence of small-localized “hot spots”.

First Row: Normal appearance of PET slices obtained from phantom (Negatives)

Second Row: Appearance of PET slices obtained from phantom with pathology

Liver (well) Heart (well) Lungs (well)

Liver (sick) Heart (sick) Lungs (sick)

93
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The basic process is to fuse the two pictures with random intensities of the

tumor images.

Fusion of a tumor in a slice containing the heart. Fusion of a lung tumor
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Statement for observer to assess: The image exhibits strong evidence of

pathology.

1) Strongly agree (I would say 1or more tumor(s) are present)

2) Agree (There exists spots on the image that might be tumors)

3) Neutral (Cannot determine from the image presence or absence of tumors)

4) Disagree (Image looks reasonably clear of tumors)

5) Strongly disagree (I see no evidence of the presence of tumors)



APPENDIX C

MATLAB ROUTINES

Matlab was used throughout the thesis research for analysis, image display,

and image manipulation. For completeness, included in this appendix are the

routine for display and a routine used to fuse the phantom images with lesion

images.

Table C.1. Example Matlab commands for plotting ROC results.

Matlab Commands for Plotting ROC Curves

% path (path,'C:\Documents and Settings\Ken\Desktop\ROC DICOM')

clear

%Start Num file on 3 since . and .. are 1 and 2

num file= dir;

nn=size(num file);

n=nn(:,1)

AA=zeros(n-5,2);

scrsz = get(0,'ScreenSize')

j=0;

for i = 3:n;

j=j+1;

fil num = getfield(num file(i),'name')

96
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(table C.1 continued)

Matlab Commands for Plotting ROC Curves

nq=str2num(fil num)

%[X,mapp,alph]=imread('temp.jpg');

Y=dicomread(fil num);

info=dicominfo(fil num);

figure('Position',[360 scrsz(4)/3 scrsz(3)/3 scrsz(4)/3]);

subplot(1,1,1);

imshow(Y,[]);

title(['Case number #',int2str(nq)],'Color','b')

AA(i,1)=nq; AA(i,2)=j;

%ylabel(int2str(nq))

%text(1,-1/7,'{\it Note symmetry.}','color','w')

%title=(['Case number #',(fil num)],'color','r')

end

info
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Table C.2. Example Matlab commands for lesion image fusion.

Matlab Commands for lesion fusion.

%X=imread(\GE\neg\2d 16min\'1.bmp');

X=imread('1.bmp');

imshow(X, []);

X2=imread('\GE\neg\2d 16min lesion\2.bmp');

%BW = roipoly;

subplot(2,2,1); imshow(X, []);

subplot(2,2,2); imshow(X2, []);

X3 = imlincomb(1,X2);

subplot(2,2,3); imshow(X3,[]);

X5=imadd(X3,X);

subplot(2,2,4); imshow(X5, []);

figure,imshow(X3, []);



APPENDIX D

ROC INPUT DATA

This appendix reproduces the raw data used for the ROC analysis. In

Table D.1 the untrained and trained observer responses are tabulated in columns,

with blocks of rows tabulating the corresponding categories of images. Columns 2

through 18 are labeled either “tn” or “un” respectively for trained and untrained

observer data, the n is some identification number.

Table D.1. ROC survey results. The 19th column labeled “UTO”
contains the totals for untrained observers, the 20th column labeled
“TO” contains the totals for the trained observers (medical profes-
sionals).

ID u1 u2 t1 t2 t3 t4 u3 t5 u4 u5 u6 u7 u8 u9 u10 u11 u12 UTO TO Total

Overall Actual Negatives

5 5 9 14 53 20 46 15 23 0 13 0 5 14 39 1 2 8 111 156 267

4 8 22 24 0 0 0 17 14 1 13 5 13 15 9 14 14 6 137 38 175

3 25 20 11 0 0 0 9 8 36 21 19 21 10 0 18 12 23 214 19 233

2 15 7 8 0 0 0 12 10 15 10 24 10 3 2 16 19 14 147 18 165

1 8 3 4 8 41 15 8 6 9 4 13 2 9 1 2 4 0 63 74 137

Totals 61 61 61 61 61 61 61 61 61 61 61 51 51 51 51 51 51 672 305 977

Overall Actual Positives

5 0 0 0 11 2 12 1 1 0 3 0 0 3 6 1 0 2 16 26 42

4 0 3 1 0 0 0 5 0 1 2 3 3 9 4 5 2 0 37 1 38

3 9 12 4 0 0 0 8 4 16 11 11 11 9 7 13 9 8 124 8 132

2 31 24 5 0 0 0 15 11 15 30 36 26 13 6 24 25 18 263 16 279

1 19 20 49 48 57 47 30 43 27 13 9 9 15 26 6 13 21 208 244 452

Totals 59 59 59 59 59 59 59 59 59 59 59 49 49 49 49 49 49 648 295 943

99
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(table D.2 continued)

ID u1 u2 t1 t2 t3 t4 u3 t5 u4 u5 u6 u7 u8 u9 u10 u11 u12 UTO TO Total

GE Discovery Actual Negatives (41)

5 1 5 7 34 14 28 7 15 0 8 0 5 10 29 1 1 6 73 98 171

4 4 12 14 0 0 0 9 7 1 4 3 9 10 9 10 9 3 83 21 104

3 16 14 8 0 0 0 7 7 20 15 14 16 9 0 12 9 18 150 15 165

2 12 7 8 0 0 0 10 8 12 10 15 9 3 2 16 18 14 128 16 144

1 8 3 4 7 27 13 8 4 8 4 9 2 9 1 2 4 0 58 55 113

Totals 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 492 205 697

GE Discovery Actual Positives (39)

5 0 0 0 9 1 9 0 1 0 1 0 0 3 5 1 0 2 12 20 32

4 0 1 0 0 0 0 3 0 0 1 2 2 6 4 4 2 0 25 0 25

3 6 5 2 0 0 0 5 3 10 7 3 7 9 5 8 6 6 77 5 82

2 16 17 5 0 0 0 10 7 11 19 29 21 12 6 20 23 16 200 12 212

1 17 16 32 30 38 30 21 28 18 11 5 9 9 19 6 8 15 154 158 312

Totals 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 468 195 663

CTI Reveal Actual Negatives (20)

5 4 4 7 19 6 18 8 8 0 5 0 0 4 10 0 1 2 38 58 96

4 4 10 10 0 0 0 8 7 0 9 2 4 5 0 4 5 3 54 17 71

3 9 6 3 0 0 0 2 1 16 6 5 5 1 0 6 3 5 64 4 68

2 3 0 0 0 0 0 2 2 3 0 9 1 0 0 0 1 0 19 2 21

1 0 0 0 1 14 2 0 2 1 0 4 0 0 0 0 0 0 5 19 24

Totals 20 20 20 20 20 20 20 20 20 20 20 10 10 10 10 10 10 180 100 280

CTI Reveal Actual Positives (20)

5 0 0 0 2 1 3 1 0 0 2 0 0 0 1 0 0 0 4 6 10

4 0 2 1 0 0 0 2 0 1 1 1 1 3 0 1 0 0 12 1 13

3 3 7 2 0 0 0 3 1 6 4 8 4 0 2 5 3 2 47 3 50

2 15 7 0 0 0 0 5 4 4 11 7 5 1 0 4 2 2 63 4 67

1 2 4 17 18 19 17 9 15 9 2 4 0 6 7 0 5 6 54 86 140

Totals 20 20 20 20 20 20 20 20 20 20 20 10 10 10 10 10 10 180 100 280
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(table D.2 continued)

ID u1 u2 t1 t2 t3 t4 u3 t5 u4 u5 u6 u7 u8 u9 u10 u11 u12 UTO TO Total

GE Discovery 2D Acquisition Actual Negatives (21)

5 0 1 3 19 6 12 4 8 0 1 0 1 1 13 0 0 0 21 48 69

4 0 5 4 0 0 0 2 3 0 1 0 3 6 6 3 2 3 31 7 38

3 9 10 6 0 0 0 3 4 8 8 7 10 7 0 6 5 7 80 10 90

2 8 4 6 0 0 0 6 4 8 9 10 6 2 2 12 11 11 89 10 99

1 4 1 2 2 15 9 6 2 5 2 4 1 5 0 0 3 0 31 30 61

Totals 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 252 105 357

GE Discovery 2D Acquisition Actual Positives (19)

5 0 0 0 5 0 6 0 0 0 0 0 0 1 4 0 0 1 6 11 17

4 0 0 0 0 0 0 1 0 0 0 0 0 4 1 1 1 0 8 0 8

3 1 2 1 0 0 0 1 1 6 5 1 3 4 2 2 2 2 31 2 33

2 6 7 3 0 0 0 5 3 5 9 16 11 6 5 11 11 9 101 6 107

1 12 10 15 14 19 13 12 15 8 5 2 5 4 7 5 5 7 82 76 158

Totals 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 228 95 323

GE Discovery 3D Acquisition Actual Negatives (20)

5 1 4 4 15 8 16 3 7 0 7 0 4 9 16 1 1 6 52 50 102

4 4 7 10 0 0 0 7 4 1 3 3 6 4 3 7 7 0 52 14 66

3 7 4 2 0 0 0 4 3 12 7 7 6 2 0 6 4 11 70 5 75

2 4 3 2 0 0 0 4 4 4 1 5 3 1 0 4 7 3 39 6 45

1 4 2 2 5 12 4 2 2 3 2 5 1 4 1 2 1 0 27 25 52

Totals 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 240 100 340

GE Discovery 3D Acquisition Actual Positives (20)

5 0 0 0 4 1 3 0 1 0 1 0 0 2 1 1 0 1 6 9 15

4 0 1 0 0 0 0 2 0 0 1 2 2 2 3 3 1 0 17 0 17

3 5 3 1 0 0 0 4 2 4 2 2 4 5 3 6 4 4 46 3 49

2 10 10 2 0 0 0 5 4 6 10 13 10 6 1 9 12 7 99 6 105

1 5 6 17 16 19 17 9 13 10 6 3 4 5 12 1 3 8 72 82 154

Totals 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 240 100 340
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(table D.2 continued)

ID u1 u2 t1 t2 t3 t4 u3 t5 u4 u5 u6 u7 u8 u9 u10 u11 u12 UTO TO Total

All 3D Acquisition Actual Negatives (20)

5 5 8 11 34 14 34 11 15 0 12 0 4 13 26 1 2 8 90 108 198

4 8 17 20 0 0 0 15 11 1 12 5 10 9 3 11 12 3 106 31 137

3 16 10 5 0 0 0 6 4 28 13 12 11 3 0 12 7 16 134 9 143

2 7 3 2 0 0 0 6 6 7 1 14 4 1 0 4 8 3 58 8 66

1 4 2 2 6 26 6 2 4 4 2 9 1 4 1 2 1 0 32 44 76

Totals 40 40 40 40 40 40 40 40 40 40 40 30 30 30 30 30 30 420 200 620

All 3D Acquisition Actual Positives (20)

5 0 0 0 6 2 6 1 1 0 3 0 0 2 2 1 0 1 10 15 25

4 0 3 1 0 0 0 4 0 1 2 3 3 5 3 4 1 0 29 1 30

3 8 10 3 0 0 0 7 3 10 6 10 8 5 5 11 7 6 93 6 99

2 25 17 2 0 0 0 10 8 10 21 20 15 7 1 13 14 9 162 10 172

1 7 10 34 34 38 34 18 28 19 8 7 4 11 19 1 8 14 126 168 294

Totals 40 40 40 40 40 40 40 40 40 40 40 30 30 30 30 30 30 420 200 620

4 Minute Acquisition Times Actual Negatives

5 1 0 3 17 4 4 2 4 0 3 0 1 4 14 0 0 3 28 32 60

4 1 6 10 0 0 0 6 5 0 2 1 5 3 5 7 5 3 44 15 59

3 7 7 2 0 0 0 3 5 8 7 7 7 7 0 3 3 9 68 7 75

2 7 6 4 0 0 0 3 6 6 6 9 6 2 1 8 11 5 70 10 80

1 4 1 1 3 16 16 6 0 6 2 3 1 4 0 2 1 0 30 36 66

Totals 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 240 100 340

4 Minute Acquisition Times Actual Positives

5 0 0 0 5 1 3 0 0 0 1 0 0 0 2 1 0 0 4 9 13

4 0 0 0 0 0 0 1 0 0 0 1 1 3 3 0 1 0 10 0 10

3 2 1 0 0 0 0 2 2 6 4 1 1 5 2 2 2 4 32 2 34

2 6 7 2 0 0 0 4 4 4 7 15 11 6 3 12 12 9 96 6 102

1 12 12 18 15 19 17 13 14 10 8 3 7 6 10 5 5 7 98 83 181

Totals 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 240 100 340
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(table D.2 continued)

ID u1 u2 t1 t2 t3 t4 u3 t5 u4 u5 u6 u7 u8 u9 u10 u11 u12 UTO TO Total

16 Minute Acquisition Times Actual Negatives

5 4 8 8 17 10 30 9 11 0 9 0 3 9 12 1 2 5 62 76 138

4 7 11 10 0 0 0 9 6 1 10 4 5 6 - 2 4 7 0 62 16 78

3 9 3 3 0 0 0 3 - 1 20 6 5 4 - 4 0 9 4 7 66 2 68

2 0 -3 - 2 0 0 0 3 0 1 - 5 5 -2 -1 -1 -4 -3 -2 -12 -2 -14

1 0 1 1 3 10 -10 - 4 4 - 2 0 6 0 0 1 0 0 0 2 8 10

Totals 20 20 20 20 20 20 20 20 20 20 20 10 10 10 10 10 10 180 100 280

16 Minute Acquisition Times Actual Positives

5 0 0 0 1 1 3 1 1 0 2 0 0 2 0 0 0 1 6 6 12

4 0 3 1 0 0 0 3 0 1 2 2 2 2 0 4 0 0 19 1 20

3 6 9 3 0 0 0 5 1 4 2 9 7 0 3 9 5 2 61 4 65

2 19 10 0 0 0 0 6 4 6 14 5 4 1 - 2 1 2 0 66 4 70

1 -5 - 2 16 19 19 17 5 14 9 0 4 - 3 5 9 - 4 3 7 28 85 113

Totals 20 20 20 20 20 20 20 20 20 20 20 10 10 10 10 10 10 180 100 280

OSEM Actual Negatives

5 0 1 3 29 6 22 7 11 0 1 0 1 5 23 0 1 2 41 71 112

4 3 10 11 0 0 0 6 7 0 6 2 7 11 6 7 7 6 71 18 89

3 14 15 9 0 0 0 4 5 17 13 9 15 8 0 12 8 12 127 14 141

2 10 4 6 0 0 0 8 5 8 9 16 7 2 2 12 12 11 101 11 112

1 4 1 2 2 25 9 6 3 6 2 4 1 5 0 0 3 0 32 41 73

Totals 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 372 155 527

OSEM Actual Positives

5 0 0 0 7 1 9 1 0 0 0 0 0 1 5 0 0 1 8 17 25

4 0 0 1 0 0 0 1 0 1 0 0 1 7 1 2 1 0 14 1 15

3 3 5 3 0 0 0 3 2 8 8 4 7 4 4 7 5 4 62 5 67

2 12 10 3 0 0 0 6 5 6 14 21 16 7 5 15 13 11 136 8 144

1 14 14 22 22 28 20 18 22 14 7 4 5 10 14 5 10 13 128 114 242

Totals 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 348 145 493
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(table D.2 continued)

ID u1 u2 t1 t2 t3 t4 u3 t5 u4 u5 u6 u7 u8 u9 u10 u11 u12 UTO TO Total

DIFT Actual Negatives

5 4 4 7 9 6 8 5 5 0 5 0 0 0 0 0 0 0 18 35 53

4 1 5 3 0 0 0 4 3 0 4 0 0 0 0 0 0 0 14 6 20

3 4 1 0 0 0 0 1 0 7 1 3 0 0 0 0 0 0 17 0 17

2 1 0 0 0 0 0 0 1 3 0 3 0 0 0 0 0 0 7 1 8

1 0 0 0 1 4 2 0 1 0 0 4 0 0 0 0 0 0 4 8 12

Totals 10 10 10 10 10 10 10 10 10 10 10 0 0 0 0 0 0 60 50 110

DIFT Actual Positives

5 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 2

4 0 2 0 0 0 0 2 0 0 1 1 0 0 0 0 0 0 6 0 6

3 1 4 0 0 0 0 1 0 4 1 5 0 0 0 0 0 0 16 0 16

2 9 4 0 0 0 0 4 2 3 6 2 0 0 0 0 0 0 28 2 30

1 0 0 10 10 10 10 3 8 3 0 2 0 0 0 0 0 0 8 48 56

Totals 10 10 10 10 10 10 10 10 10 10 10 0 0 0 0 0 0 60 50 110

3D FOR Actual Negatives

5 0 3 -2 -21 - 2 0 -3 - 5 0 3 0 2 4 -11 1 1 3 3 -30 -27

4 3 -4 - 4 0 0 0 -1 - 4 1 0 2 -2 -5 -8 - 3 0 -6 -23 -8 -31

3 -9 -13 - 6 0 0 0 -2 -6 -4 -8 -7 -11 -12 0 -3 -4 -5 -78 -12 -90

2 -11 -7 - 8 0 0 0 -5 -6 -10 -14 -14 -9 -3 -3 -16 -15 -13 -120 -14 -134

1 - 4 0 - 1 0 -19 -21 -10 0 -8 -2 -2 -1 - 5 1 0 - 3 0 -34 -41 -75

Totals -21 -21 -21 -21 -21 -21 -21 -21 -21 -21 -21 -21 -21 -21 -21 -21 -21 -252 -105 -357

3D FOR Actual Positives

5 0 0 0 - 6 0 - 6 0 1 0 0 0 0 1 - 5 0 0 0 -4 -11 -15

4 0 1 0 0 0 0 0 0 0 1 1 1 -5 - 1 2 - 1 0 - 1 0 -1

3 2 0 0 0 0 0 1 -1 -8 - 7 0 0 -4 - 1 2 0 -2 -17 -1 -18

2 -2 -4 - 3 0 0 0 -4 -3 -3 -6 -18 -12 -6 -7 -14 -11 -11 -98 -6 -104

1 -19 -16 -16 -13 -19 -13 -16 -16 -8 -7 -2 -8 -5 -5 -9 -7 -6 -108 -77 -185

Totals -19 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19 -228 -95 -323
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